Page 86 - Read Online
P. 86
Page 354 Jones et al. J Transl Genet Genom 2021;5:341-56 https://dx.doi.org/10.20517/jtgg.2021.19
42. Yu J, Yu J, Mani RS, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate
cancer progression. Cancer Cell 2010;17:443-54. DOI PubMed PMC
43. Kim E, Kim M, Woo DH, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes
tumorigenicity of glioblastoma stem-like cells. Cancer Cell 2013;23:839-52. DOI PubMed PMC
44. Sanulli S, Justin N, Teissandier A, et al. Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell
differentiation. Mol Cell 2015;57:769-83. DOI PubMed PMC
45. He A, Shen X, Ma Q, et al. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev 2012;26:37-42.
DOI PubMed PMC
46. Shi B, Liang J, Yang X, et al. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast
cancer cells. Mol Cell Biol 2007;27:5105-19. DOI PubMed PMC
47. Lee ST, Li Z, Wu Z, et al. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol Cell
2011;43:798-810. DOI PubMed
48. Gonzalez ME, Moore HM, Li X, et al. EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc Natl Acad Sci
U S A 2014;111:3098-103. DOI PubMed PMC
49. Xu K, Wu ZJ, Groner AC, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent.
Science 2012;338:1465-9. DOI PubMed PMC
50. Kim J, Lee Y, Lu X, et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep
2018;25:2808-20.e4. DOI PubMed PMC
51. Rodriguez-Vida A, Galazi M, Rudman S, Chowdhury S, Sternberg CN. Enzalutamide for the treatment of metastatic castration-
resistant prostate cancer. Drug Des Devel Ther 2015;9:3325-39. DOI PubMed PMC
52. Bai Y, Zhang Z, Cheng L, et al. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-
resistant prostate cancer. J Biol Chem 2019;294:9911-23. DOI PubMed PMC
53. Welti J, Sharp A, Brooks N, et al; SU2C/PCF International Prostate Cancer Dream Team. Targeting the p300/CBP axis in lethal
prostate cancer. Cancer Discov 2021;11:1118-37. DOI PubMed PMC
54. Xia C, Tao Y, Li M, Che T, Qu J. Protein acetylation and deacetylation: an important regulatory modification in gene transcription
(review). Exp Ther Med 2020;20:2923-40. DOI PubMed PMC
55. Zhong J, Ding L, Bohrer LR, et al. p300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate
tumorigenesis. Cancer Res 2014;74:1870-80. DOI PubMed PMC
56. Fu M, Wang C, Reutens AT, et al. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen
receptor at sites governing hormone-dependent transactivation. J Biol Chem 2000;275:20853-60. DOI PubMed
57. Lasko LM, Jakob CG, Edalji RP, et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours.
Nature 2017;550:128-32. DOI PubMed PMC
58. Jin L, Garcia J, Chan E, et al. Therapeutic Targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate
cancer. Cancer Res 2017;77:5564-75. DOI PubMed
59. Liu J, He D, Cheng L, et al. p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate
cancer. Oncogene 2020;39:3939-51. DOI PubMed PMC
60. Ghosh AK, Steele R, Ray RB. Knockdown of MBP-1 in human prostate cancer cells delays cell cycle progression. J Biol Chem
2006;281:23652-7. DOI PubMed
61. Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB. The bromodomain: a conserved sequence found in human,
Drosophila and yeast proteins. Nucleic Acids Res 1992;20:2603. DOI PubMed PMC
62. Filippakopoulos P, Knapp S. The bromodomain interaction module. FEBS Lett 2012;586:2692-704. DOI PubMed
63. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain.
Nature 1999;399:491-6. DOI PubMed
64. Jiang YW, Veschambre P, Erdjument-Bromage H, et al. Mammalian mediator of transcriptional regulation and its possible role as an
end-point of signal transduction pathways. Proc Natl Acad Sci U S A 1998;95:8538-43. DOI PubMed PMC
65. Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. The bromodomain protein Brd4 is a positive regulatory component
of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005;19:523-34. DOI PubMed
66. Yang Z, Yik JH, Chen R, et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein
Brd4. Mol Cell 2005;19:535-45. DOI PubMed
67. Shi J, Wang Y, Zeng L, et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like
breast cancer. Cancer Cell 2014;25:210-25. DOI PubMed PMC
68. Shi J, Cao J, Zhou BP. Twist-BRD4 complex: potential drug target for basal-like breast cancer. Curr Pharm Des 2015;21:1256-61.
DOI PubMed PMC
69. Devaiah BN, Lewis BA, Cherman N, et al. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II
carboxy-terminal domain. Proc Natl Acad Sci U S A 2012;109:6927-32. DOI PubMed PMC
70. Devaiah BN, Mu J, Akman B, et al. MYC protein stability is negatively regulated by BRD4. Proc Natl Acad Sci U S A
2020;117:13457-67. DOI PubMed PMC
71. Pawar A, Gollavilli PN, Wang S, Asangani IA. Resistance to BET inhibitor leads to alternative therapeutic vulnerabilities in
castration-resistant prostate cancer. Cell Rep 2018;22:2236-45. DOI PubMed
72. Nagarajan S, Hossan T, Alawi M, et al. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation
and gene transcription. Cell Rep 2014;8:460-9. DOI PubMed PMC