Page 85 - Read Online
P. 85

Jones et al. J Transl Genet Genom 2021;5:341-56  https://dx.doi.org/10.20517/jtgg.2021.19  Page 353

                    Pharmacol 2018;837:8-24.  DOI  PubMed
               12.       Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010;28:1057-68.  DOI  PubMed
               13.       Hake SB, Xiao A, Allis CD. Linking the epigenetic “language” of covalent histone modifications to cancer. Br J Cancer
                    2004;90:761-9.  DOI  PubMed  PMC
               14.       Tuorto F, Herbst F, Alerasool N, et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during
                    haematopoiesis. EMBO J 2015;34:2350-62.  DOI  PubMed  PMC
               15.       Jurkowska RZ, Anspach N, Urbanke C, et al. Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a
                    in complex with regulator Dnmt3L. Nucleic Acids Res 2008;36:6656-63.  DOI  PubMed  PMC
               16.       Ashour N, Angulo JC, Andrés G, et al. A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer
                    diagnosis and prognosis. Prostate 2014;74:1171-82.  DOI  PubMed
               17.       Angulo JC, Andrés G, Ashour N, Sánchez-Chapado M, López JI, Ropero S. Development of castration resistant prostate cancer can
                    be predicted by a DNA hypermethylation profile. J Urol 2016;195:619-26.  DOI  PubMed
               18.       Moritz R, Ellinger J, Nuhn P, et al. DNA hypermethylation as a predictor of PSA recurrence in patients with low- and intermediate-
                    grade prostate cancer. Anticancer Res 2013;33:5249-54.  PubMed
               19.       Barry KH, Mohanty K, Erickson PA, et al. MYC DNA methylation in prostate tumor tissue is associated with gleason score. Genes
                    (Basel) 2020;12:12.  DOI  PubMed  PMC
               20.       Rauluseviciute I, Drabløs F, Rye MB. DNA hypermethylation associated with upregulated gene expression in prostate cancer
                    demonstrates the diversity of epigenetic regulation. BMC Med Genomics 2020;13:6.  DOI  PubMed  PMC
               21.       Mohammadi M, Irani S, Salahshourifar I, Hosseini J, Moradi A, Pouresmaeili F. The effect of hormone therapy on the expression of
                    prostate cancer and multi-epigenetic marker genes in a population of iranian patients. Cancer Manag Res 2020;12:3691-7.  DOI
                    PubMed  PMC
               22.       Gravina GL, Marampon F, Piccolella M, et al. Hormonal therapy promotes hormone-resistant phenotype by increasing DNMT
                    activity and expression in prostate cancer models. Endocrinology 2011;152:4550-61.  DOI  PubMed  PMC
               23.       Chen X, Skutt-Kakaria K, Davison J, et al. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell
                    lineage commitment. Genes Dev 2012;26:2499-511.  DOI  PubMed  PMC
               24.       Poulard C, Bittencourt D, Wu DY, Hu Y, Gerke DS, Stallcup MR. A post-translational modification switch controls coactivator
                    function of histone methyltransferases G9a and GLP. EMBO Rep 2017;18:1442-59.  DOI  PubMed  PMC
               25.       Lee DY, Northrop JP, Kuo MH, Stallcup MR. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear
                    receptors. J Biol Chem 2006;281:8476-85.  DOI  PubMed  PMC
               26.       Chin HG, Estève PO, Pradhan M, et al. Automethylation of G9a and its implication in wider substrate specificity and HP1 binding.
                    Nucleic Acids Res 2007;35:7313-23.  DOI  PubMed  PMC
               27.       Rathert P, Dhayalan A, Murakami M, et al. Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol
                    2008;4:344-6.  DOI  PubMed  PMC
               28.       Chen MW, Hua KT, Kao HJ, et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing
                    the cell adhesion molecule Ep-CAM. Cancer Res 2010;70:7830-40.  DOI  PubMed
               29.       Hua KT, Wang MY, Chen MW, et al. The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes
                    peritoneal metastasis. Mol Cancer 2014;13:189.  DOI  PubMed  PMC
               30.       Lee JS, Kim Y, Kim IS, et al. Negative regulation of hypoxic responses via induced Reptin methylation. Mol Cell 2010;39:71-85.
                    DOI  PubMed  PMC
               31.       Lee JS, Kim Y, Bhin J, et al. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Natl Acad Sci U S A
                    2011;108:13510-5.  DOI  PubMed  PMC
               32.       Lee SH, Kim J, Kim WH, Lee YM. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells.
                    Oncogene 2009;28:184-94.  DOI  PubMed
               33.       Casciello F, Al-Ejeh F, Miranda M, et al. G9a-mediated repression of CDH10 in hypoxia enhances breast tumour cell motility and
                    associates with poor survival outcome. Theranostics 2020;10:4515-29.  DOI  PubMed  PMC
               34.       Kang J, Shin SH, Yoon H, et al. FIH is an oxygen sensor in ovarian cancer for G9a/GLP-driven epigenetic regulation of metastasis-
                    related genes. Cancer Res 2018;78:1184-99.  DOI  PubMed
               35.       Ding J, Li T, Wang X, et al. The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to
                    sustain cancer cell survival and proliferation. Cell Metab 2013;18:896-907.  DOI  PubMed  PMC
               36.       Dong C, Yuan T, Wu Y, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer.
                    Cancer Cell 2013;23:316-31.  DOI  PubMed  PMC
               37.       Wang YF, Zhang J, Su Y, et al. G9a regulates breast cancer growth by modulating iron homeostasis through the repression of
                    ferroxidase hephaestin. Nat Commun 2017;8:274.  DOI  PubMed  PMC
               38.       Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate-Shen C. Identification of an NKX3.1-G9a-UTY transcriptional
                    regulatory network that controls prostate differentiation. Science 2016;352:1576-80.  DOI  PubMed  PMC
               39.       Segovia C, San José-Enériz E, Munera-Maravilla E, et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder
                    cancer regression. Nat Med 2019;25:1073-81.  DOI  PubMed
               40.       Guler GD, Tindell CA, Pitti R, et al. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal
                    drug exposure. Cancer Cell 2017;32:221-237.e13.  DOI  PubMed
               41.       Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 2002;298:1039-43.
                    DOI  PubMed
   80   81   82   83   84   85   86   87   88   89   90