Page 85 - Read Online
P. 85
Jones et al. J Transl Genet Genom 2021;5:341-56 https://dx.doi.org/10.20517/jtgg.2021.19 Page 353
Pharmacol 2018;837:8-24. DOI PubMed
12. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010;28:1057-68. DOI PubMed
13. Hake SB, Xiao A, Allis CD. Linking the epigenetic “language” of covalent histone modifications to cancer. Br J Cancer
2004;90:761-9. DOI PubMed PMC
14. Tuorto F, Herbst F, Alerasool N, et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during
haematopoiesis. EMBO J 2015;34:2350-62. DOI PubMed PMC
15. Jurkowska RZ, Anspach N, Urbanke C, et al. Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a
in complex with regulator Dnmt3L. Nucleic Acids Res 2008;36:6656-63. DOI PubMed PMC
16. Ashour N, Angulo JC, Andrés G, et al. A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer
diagnosis and prognosis. Prostate 2014;74:1171-82. DOI PubMed
17. Angulo JC, Andrés G, Ashour N, Sánchez-Chapado M, López JI, Ropero S. Development of castration resistant prostate cancer can
be predicted by a DNA hypermethylation profile. J Urol 2016;195:619-26. DOI PubMed
18. Moritz R, Ellinger J, Nuhn P, et al. DNA hypermethylation as a predictor of PSA recurrence in patients with low- and intermediate-
grade prostate cancer. Anticancer Res 2013;33:5249-54. PubMed
19. Barry KH, Mohanty K, Erickson PA, et al. MYC DNA methylation in prostate tumor tissue is associated with gleason score. Genes
(Basel) 2020;12:12. DOI PubMed PMC
20. Rauluseviciute I, Drabløs F, Rye MB. DNA hypermethylation associated with upregulated gene expression in prostate cancer
demonstrates the diversity of epigenetic regulation. BMC Med Genomics 2020;13:6. DOI PubMed PMC
21. Mohammadi M, Irani S, Salahshourifar I, Hosseini J, Moradi A, Pouresmaeili F. The effect of hormone therapy on the expression of
prostate cancer and multi-epigenetic marker genes in a population of iranian patients. Cancer Manag Res 2020;12:3691-7. DOI
PubMed PMC
22. Gravina GL, Marampon F, Piccolella M, et al. Hormonal therapy promotes hormone-resistant phenotype by increasing DNMT
activity and expression in prostate cancer models. Endocrinology 2011;152:4550-61. DOI PubMed PMC
23. Chen X, Skutt-Kakaria K, Davison J, et al. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell
lineage commitment. Genes Dev 2012;26:2499-511. DOI PubMed PMC
24. Poulard C, Bittencourt D, Wu DY, Hu Y, Gerke DS, Stallcup MR. A post-translational modification switch controls coactivator
function of histone methyltransferases G9a and GLP. EMBO Rep 2017;18:1442-59. DOI PubMed PMC
25. Lee DY, Northrop JP, Kuo MH, Stallcup MR. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear
receptors. J Biol Chem 2006;281:8476-85. DOI PubMed PMC
26. Chin HG, Estève PO, Pradhan M, et al. Automethylation of G9a and its implication in wider substrate specificity and HP1 binding.
Nucleic Acids Res 2007;35:7313-23. DOI PubMed PMC
27. Rathert P, Dhayalan A, Murakami M, et al. Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol
2008;4:344-6. DOI PubMed PMC
28. Chen MW, Hua KT, Kao HJ, et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing
the cell adhesion molecule Ep-CAM. Cancer Res 2010;70:7830-40. DOI PubMed
29. Hua KT, Wang MY, Chen MW, et al. The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes
peritoneal metastasis. Mol Cancer 2014;13:189. DOI PubMed PMC
30. Lee JS, Kim Y, Kim IS, et al. Negative regulation of hypoxic responses via induced Reptin methylation. Mol Cell 2010;39:71-85.
DOI PubMed PMC
31. Lee JS, Kim Y, Bhin J, et al. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Natl Acad Sci U S A
2011;108:13510-5. DOI PubMed PMC
32. Lee SH, Kim J, Kim WH, Lee YM. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells.
Oncogene 2009;28:184-94. DOI PubMed
33. Casciello F, Al-Ejeh F, Miranda M, et al. G9a-mediated repression of CDH10 in hypoxia enhances breast tumour cell motility and
associates with poor survival outcome. Theranostics 2020;10:4515-29. DOI PubMed PMC
34. Kang J, Shin SH, Yoon H, et al. FIH is an oxygen sensor in ovarian cancer for G9a/GLP-driven epigenetic regulation of metastasis-
related genes. Cancer Res 2018;78:1184-99. DOI PubMed
35. Ding J, Li T, Wang X, et al. The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to
sustain cancer cell survival and proliferation. Cell Metab 2013;18:896-907. DOI PubMed PMC
36. Dong C, Yuan T, Wu Y, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer.
Cancer Cell 2013;23:316-31. DOI PubMed PMC
37. Wang YF, Zhang J, Su Y, et al. G9a regulates breast cancer growth by modulating iron homeostasis through the repression of
ferroxidase hephaestin. Nat Commun 2017;8:274. DOI PubMed PMC
38. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate-Shen C. Identification of an NKX3.1-G9a-UTY transcriptional
regulatory network that controls prostate differentiation. Science 2016;352:1576-80. DOI PubMed PMC
39. Segovia C, San José-Enériz E, Munera-Maravilla E, et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder
cancer regression. Nat Med 2019;25:1073-81. DOI PubMed
40. Guler GD, Tindell CA, Pitti R, et al. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal
drug exposure. Cancer Cell 2017;32:221-237.e13. DOI PubMed
41. Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 2002;298:1039-43.
DOI PubMed