Page 87 - Read Online
P. 87
Jones et al. J Transl Genet Genom 2021;5:341-56 https://dx.doi.org/10.20517/jtgg.2021.19 Page 355
73. Faivre EJ, McDaniel KF, Albert DH, et al. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature
2020;578:306-10. DOI PubMed
74. Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010;468:1067-73. DOI PubMed PMC
75. Shu S, Polyak K. BET bromodomain proteins as cancer therapeutic targets. Cold Spring Harb Symp Quant Biol 2016;81:123-9. DOI
PubMed
76. Gilan O, Rioja I, Knezevic K, et al. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation.
Science 2020;368:387-94. DOI PubMed PMC
77. Dai X, Gan W, Li X, et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of
BRD4. Nat Med 2017;23:1063-71. DOI PubMed PMC
78. Zhou B, Hu J, Xu F, et al. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with
picomolar cellular potencies and capable of achieving tumor regression. J Med Chem 2018;61:462-81. DOI PubMed PMC
79. Raina K, Lu J, Qian Y, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc
Natl Acad Sci U S A 2016;113:7124-9. DOI PubMed PMC
80. Mao F, Li J, Luo Q, et al. Plk1 inhibition enhances the efficacy of BET epigenetic reader blockade in castration-resistant prostate
cancer. Mol Cancer Ther 2018;17:1554-65. DOI PubMed PMC
81. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol
2014;6:a018713. DOI PubMed PMC
82. Rana Z, Diermeier S, Hanif M, Rosengren RJ. Understanding failure and improving treatment using HDAC inhibitors for prostate
cancer. Biomedicines 2020;8:22. DOI PubMed PMC
83. Kaushik D, Vashistha V, Isharwal S, Sediqe SA, Lin MF. Histone deacetylase inhibitors in castration-resistant prostate cancer:
molecular mechanism of action and recent clinical trials. Ther Adv Urol 2015;7:388-95. DOI PubMed PMC
84. Weichert W, Röske A, Gekeler V, et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2
expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 2008;98:604-10. DOI PubMed
PMC
85. Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate
cancer. Clin Epigenetics 2016;8:98. DOI PubMed PMC
86. Gao L, Alumkal J. Epigenetic regulation of androgen receptor signaling in prostate cancer. Epigenetics 2010;5:100-4. DOI PubMed
PMC
87. Welsbie DS, Xu J, Chen Y, et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-
resistant prostate cancer. Cancer Res 2009;69:958-66. DOI PubMed PMC
88. Sato S, Katsushima K, Shinjo K, et al. Histone deacetylase inhibition in prostate cancer triggers miR-320-mediated suppression of the
androgen receptor. Cancer Res 2016;76:4192-204. DOI PubMed
89. Robey RW, Chakraborty AR, Basseville A, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm
2011;8:2021-31. DOI PubMed PMC
90. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004;119:941-53.
DOI PubMed
91. Crea F, Sun L, Mai A, et al. The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer 2012;11:52. DOI
PubMed PMC
92. Gao S, Chen S, Han D, et al. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat
Genet 2020;52:1011-7. DOI PubMed PMC
93. Regufe da Mota S, Bailey S, Strivens RA, et al. LSD1 inhibition attenuates androgen receptor V7 splice variant activation in
castration resistant prostate cancer models. Cancer Cell Int 2018;18:71. DOI PubMed PMC
94. Metzger E, Wissmann M, Yin N, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent
transcription. Nature 2005;437:436-9. DOI PubMed
95. Wissmann M, Yin N, Müller JM, et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent
gene expression. Nat Cell Biol 2007;9:347-53. DOI PubMed
96. Sehrawat A, Gao L, Wang Y, et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function.
Proc Natl Acad Sci U S A 2018;115:E4179-88. DOI PubMed PMC
97. Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019;12:129. DOI
PubMed PMC
98. Wilson S, Fan L, Sahgal N, Qi J, Filipp FV. The histone demethylase KDM3A regulates the transcriptional program of the androgen
receptor in prostate cancer cells. Oncotarget 2017;8:30328-43. DOI PubMed PMC
99. Kim TD, Jin F, Shin S, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin
Invest 2016;126:706-20. DOI PubMed PMC
100. Chu CH, Wang LY, Hsu KC, et al. KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel
inhibitor. J Med Chem 2014;57:5975-85. DOI PubMed PMC
101. Duan L, Rai G, Roggero C, et al. KDM4/JMJD2 histone demethylase inhibitors block prostate tumor growth by suppressing the
expression of AR and BMYB-regulated genes. Chem Biol 2015;22:1185-96. DOI PubMed PMC
102. Stief SM, Hanneforth AL, Weser S, et al. Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia 2020;34:50-
62. DOI PubMed PMC
103. Gao Y, Gan H, Lou Z, Zhang Z. Asf1a resolves bivalent chromatin domains for the induction of lineage-specific genes during mouse