Page 87 - Read Online
P. 87

Jones et al. J Transl Genet Genom 2021;5:341-56  https://dx.doi.org/10.20517/jtgg.2021.19  Page 355

               73.       Faivre EJ, McDaniel KF, Albert DH, et al. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature
                    2020;578:306-10.  DOI  PubMed
               74.       Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010;468:1067-73.  DOI  PubMed  PMC
               75.       Shu S, Polyak K. BET bromodomain proteins as cancer therapeutic targets. Cold Spring Harb Symp Quant Biol 2016;81:123-9.  DOI
                    PubMed
               76.       Gilan O, Rioja I, Knezevic K, et al. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation.
                    Science 2020;368:387-94.  DOI  PubMed  PMC
               77.       Dai X, Gan W, Li X, et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of
                    BRD4. Nat Med 2017;23:1063-71.  DOI  PubMed  PMC
               78.       Zhou B, Hu J, Xu F, et al. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with
                    picomolar cellular potencies and capable of achieving tumor regression. J Med Chem 2018;61:462-81.  DOI  PubMed  PMC
               79.       Raina K, Lu J, Qian Y, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc
                    Natl Acad Sci U S A 2016;113:7124-9.  DOI  PubMed  PMC
               80.       Mao F, Li J, Luo Q, et al. Plk1 inhibition enhances the efficacy of BET epigenetic reader blockade in castration-resistant prostate
                    cancer. Mol Cancer Ther 2018;17:1554-65.  DOI  PubMed  PMC
               81.       Seto  E,  Yoshida  M.  Erasers  of  histone  acetylation:  the  histone  deacetylase  enzymes.  Cold  Spring  Harb  Perspect  Biol
                    2014;6:a018713.  DOI  PubMed  PMC
               82.       Rana Z, Diermeier S, Hanif M, Rosengren RJ. Understanding failure and improving treatment using HDAC inhibitors for prostate
                    cancer. Biomedicines 2020;8:22.  DOI  PubMed  PMC
               83.       Kaushik D, Vashistha V, Isharwal S, Sediqe SA, Lin MF. Histone deacetylase inhibitors in castration-resistant prostate cancer:
                    molecular mechanism of action and recent clinical trials. Ther Adv Urol 2015;7:388-95.  DOI  PubMed  PMC
               84.       Weichert W, Röske A, Gekeler V, et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2
                    expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 2008;98:604-10.  DOI  PubMed
                    PMC
               85.       Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate
                    cancer. Clin Epigenetics 2016;8:98.  DOI  PubMed  PMC
               86.       Gao L, Alumkal J. Epigenetic regulation of androgen receptor signaling in prostate cancer. Epigenetics 2010;5:100-4.  DOI  PubMed
                    PMC
               87.       Welsbie DS, Xu J, Chen Y, et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-
                    resistant prostate cancer. Cancer Res 2009;69:958-66.  DOI  PubMed  PMC
               88.       Sato S, Katsushima K, Shinjo K, et al. Histone deacetylase inhibition in prostate cancer triggers miR-320-mediated suppression of the
                    androgen receptor. Cancer Res 2016;76:4192-204.  DOI  PubMed
               89.       Robey RW, Chakraborty AR, Basseville A, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm
                    2011;8:2021-31.  DOI  PubMed  PMC
               90.       Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004;119:941-53.
                    DOI  PubMed
               91.       Crea F, Sun L, Mai A, et al. The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer 2012;11:52.  DOI
                    PubMed  PMC
               92.       Gao S, Chen S, Han D, et al. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat
                    Genet 2020;52:1011-7.  DOI  PubMed  PMC
               93.       Regufe da Mota S, Bailey S, Strivens RA, et al. LSD1 inhibition attenuates androgen receptor V7 splice variant activation in
                    castration resistant prostate cancer models. Cancer Cell Int 2018;18:71.  DOI  PubMed  PMC
               94.       Metzger E, Wissmann M, Yin N, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent
                    transcription. Nature 2005;437:436-9.  DOI  PubMed
               95.       Wissmann M, Yin N, Müller JM, et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent
                    gene expression. Nat Cell Biol 2007;9:347-53.  DOI  PubMed
               96.       Sehrawat A, Gao L, Wang Y, et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function.
                    Proc Natl Acad Sci U S A 2018;115:E4179-88.  DOI  PubMed  PMC
               97.       Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019;12:129.  DOI
                    PubMed  PMC
               98.       Wilson S, Fan L, Sahgal N, Qi J, Filipp FV. The histone demethylase KDM3A regulates the transcriptional program of the androgen
                    receptor in prostate cancer cells. Oncotarget 2017;8:30328-43.  DOI  PubMed  PMC
               99.       Kim TD, Jin F, Shin S, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin
                    Invest 2016;126:706-20.  DOI  PubMed  PMC
               100.      Chu CH, Wang LY, Hsu KC, et al. KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel
                    inhibitor. J Med Chem 2014;57:5975-85.  DOI  PubMed  PMC
               101.      Duan L, Rai G, Roggero C, et al. KDM4/JMJD2 histone demethylase inhibitors block prostate tumor growth by suppressing the
                    expression of AR and BMYB-regulated genes. Chem Biol 2015;22:1185-96.  DOI  PubMed  PMC
               102.      Stief SM, Hanneforth AL, Weser S, et al. Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia 2020;34:50-
                    62.  DOI  PubMed  PMC
               103.      Gao Y, Gan H, Lou Z, Zhang Z. Asf1a resolves bivalent chromatin domains for the induction of lineage-specific genes during mouse
   82   83   84   85   86   87   88   89   90   91   92