Page 72 - Read Online
P. 72

de Kouchkovsky et al. J Transl Genet Genom 2021;5:265-77  https://dx.doi.org/10.20517/jtgg.2021.32  Page 277

                   carcinomas. Epigenetics 2016;11:184-93.  DOI  PubMed  PMC
               57.      Zhao SG, Chen WS, Li H, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet 2020;52:778-89.  DOI
                   PubMed  PMC
               58.      Choi SYC, Ettinger SL, Lin D, et al. Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine
                   prostate cancer. Cancer Med 2018;7:3385-92.  DOI  PubMed  PMC
               59.      Li W, Cohen A, Sun Y, et al. The role of CD44 in glucose metabolism in prostatic small cell neuroendocrine carcinoma. Mol Cancer
                   Res 2016;14:344-53.  DOI  PubMed  PMC
               60.      Reina-Campos M, Linares JF, Duran A, et al. Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes
                   neuroendocrine prostate cancer. Cancer Cell 2019;35:385-400.e9.  DOI  PubMed  PMC
               61.      Clermont PL, Lin D, Crea F, et al. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin Epigenetics 2015;7:40.  DOI
                   PubMed  PMC
               62.      Puca L, Bareja R, Prandi D, et al. Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun 2018;9:2404.  DOI
                   PubMed  PMC
               63.      Shan J, Al-Muftah MA, Al-Kowari MK, et al. Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine
                   differentiation in prostate cancer. Cell Death Discov 2019;5:139.  DOI  PubMed  PMC
               64.      Zhang Y, Zheng D, Zhou T, et al. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-
                   EZH2-TSP1 pathway in prostate cancers. Nat Commun 2018;9:4080.  DOI  PubMed  PMC
               65.      Li Y, Donmez N, Sahinalp C, et al. SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen
                   receptor pathway inhibition. Eur Urol 2017;71:68-78.  DOI  PubMed
               66.      Cavadas MA, Mesnieres M, Crifo B, et al. REST is a hypoxia-responsive transcriptional repressor. Sci Rep 2016;6:31355.  DOI
                   PubMed  PMC
               67.      Lapuk AV, Wu C, Wyatt AW, et al. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype
                   in prostate cancer. J Pathol 2012;227:286-97.  DOI  PubMed  PMC
               68.      Chang YT, Lin TP, Campbell M, et al. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-
                   refractory prostate cancer. Sci Rep 2017;7:42795.  DOI  PubMed  PMC
               69.      Jia L, Berman BP, Jariwala U, et al. Genomic androgen receptor-occupied regions with different functions, defined by histone
                   acetylation, coregulators and transcriptional capacity. PLoS One 2008;3:e3645.  DOI  PubMed  PMC
               70.      Cai C, He HH, Chen S, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor
                   through recruitment of lysine-specific demethylase 1. Cancer Cell 2011;20:457-71.  DOI  PubMed  PMC
               71.      Liang Y, Ahmed M, Guo H, et al. LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer
                   progression. Cancer Res 2017;77:5479-90.  DOI  PubMed
               72.      Hino  S,  Kohrogi  K,  Nakao  M.  Histone  demethylase  LSD1  controls  the  phenotypic  plasticity  of  cancer  cells.  Cancer  Sci
                   2016;107:1187-92.  DOI  PubMed  PMC
               73.      Coleman DJ, Sampson DA, Sehrawat A, et al. Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by
                   SRRM4. Neoplasia 2020;22:253-62.  DOI  PubMed  PMC
               74.      Alumkal JJ, Sun D, Lu E, et al. Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated
                   with enzalutamide resistance. Proc Natl Acad Sci U S A 2020;117:12315-23.  DOI  PubMed  PMC
               75.      Zhang D, Park D, Zhong Y, et al. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate
                   cancer. Nat Commun 2016;7:10798.  DOI  PubMed  PMC
               76.      Beltran H, Oromendia C, Danila DC, et al. A phase II trial of the Aurora Kinase A inhibitor alisertib for patients with castration-
                   resistant and neuroendocrine prostate cancer: efficacy and biomarkers. Clin Cancer Res 2019;25:43-51.  DOI  PubMed  PMC
               77.      Liu B, Li L, Yang G, et al. PARP inhibition suppresses GR-MYCN-CDK5-RB1-E2F1 signaling and neuroendocrine differentiation in
                   castration-resistant prostate cancer. Clin Cancer Res 2019;25:6839-51.  DOI  PubMed  PMC
               78.      Aggarwal RR, Schweizer MT, Nanus DM, et al. A phase Ib/IIa study of the pan-BET inhibitor ZEN-3694 in combination with
                   enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res 2020;26:5338-47.  DOI  PubMed  PMC
               79.      Knutson SK, Wigle TJ, Warholic NM, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma
                   cells. Nat Chem Biol 2012;8:890-6.  DOI  PubMed
               80.      McCabe MT, Ott HM, Ganji G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature
                   2012;492:108-12.  DOI  PubMed
   67   68   69   70   71   72   73   74   75   76   77