Page 70 - Read Online
P. 70
de Kouchkovsky et al. J Transl Genet Genom 2021;5:265-77 https://dx.doi.org/10.20517/jtgg.2021.32 Page 275
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2021.
REFERENCES
1. Welch HG, Albertsen PC. Reconsidering prostate cancer mortality - the future of PSA screening. N Engl J Med 2020;382:1557-63.
DOI PubMed
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2018;69:7-34. DOI PubMed
3. Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med
2016;22:298-305. DOI PubMed PMC
4. Aparicio AM, Harzstark AL, Corn PG, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer
Res 2013;19:3621-30. DOI PubMed PMC
5. Conteduca V, Oromendia C, Eng KW, et al. Clinical features of neuroendocrine prostate cancer. Eur J Cancer 2019;121:7-18. DOI
PubMed PMC
6. Spiess PE, Pettaway CA, Vakar-Lopez F, et al. Treatment outcomes of small cell carcinoma of the prostate: a single-center study.
Cancer 2007;110:1729-37. DOI PubMed
7. Tětu B, Ro JY, Ayala AG, Johnson DE, Logothetis CJ, Ordonez NG. Small cell carcinoma of the prostate part I a clinicopathologic
study of 20 cases. Cancer 1987;59:1803-9. DOI PubMed
8. Epstein JI, Amin MB, Beltran H, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am
J Surg Pathol 2014;38:756-67. DOI PubMed PMC
9. Dong B, Miao J, Wang Y, et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer.
Commun Biol 2020;3:778. DOI PubMed PMC
10. Turbat-Herrera EA, Herrera GA, Gore I, Lott RL, Grizzle WE, Bonnin JM. Neuroendocrine differentiation in prostatic carcinomas. A
retrospective autopsy study. Arch Pathol Lab Med 1988;112:1100-5. PubMed
11. Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine
prostate cancer: a multi-institutional prospective study. J Clin Oncol 2018;36:2492-503. DOI PubMed PMC
12. Aparicio AM, Shen L, Tapia EL, et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate
cancers. Clin Cancer Res 2016;22:1520-30. DOI PubMed PMC
13. George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015;524:47-53. DOI PubMed
PMC
14. Aggarwal RR, Quigley DA, Huang J, et al. Whole-genome and transcriptional analysis of treatment-emergent small-cell
neuroendocrine prostate cancer demonstrates intraclass heterogeneity. Mol Cancer Res 2019;17:1235-40. DOI PubMed PMC
15. Quigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 2018;174:758-
69.e9. DOI PubMed PMC
16. Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015;163:1011-25. DOI
17. Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161:1215-28. DOI
PubMed PMC
18. Schlereth K, Heyl C, Krampitz AM, et al. Characterization of the p53 cistrome--DNA binding cooperativity dissects p53's tumor
suppressor functions. PLoS Genet 2013;9:e1003726. DOI PubMed PMC
19. Macleod KF. The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer? J Clin Invest 2010;120:4179-82.
DOI PubMed PMC
20. Nava Rodrigues D, Casiraghi N, Romanel A, et al. RB1 heterogeneity in advanced metastatic castration-resistant prostate cancer. Clin
Cancer Res 2019;25:687-97. DOI PubMed
21. Nyquist MD, Corella A, Coleman I, et al. Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of
therapeutics and confers vulnerability to replication stress. Cell Rep 2020;31:107669. DOI PubMed PMC
22. Sowalsky AG, Ye H, Bhasin M, et al. Neoadjuvant-intensive androgen deprivation therapy selects for prostate tumor foci with diverse
subclonal oncogenic alterations. Cancer Res 2018;78:4716-30. DOI PubMed PMC
23. Mu P, Zhang Z, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate
cancer. Science 2017;355:84-8. DOI PubMed PMC
24. Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen
resistance. Science 2017;355:78-83. DOI PubMed PMC
25. Kareta MS, Gorges LL, Hafeez S, et al. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and
tumorigenesis. Cell Stem Cell 2015;16:39-50. DOI PubMed PMC
26. Soundararajan R, Aparicio AM, Logothetis CJ, Mani SA, Maity SN. Function of tumor suppressors in resistance to antiandrogen