Page 70 - Read Online
P. 70

de Kouchkovsky et al. J Transl Genet Genom 2021;5:265-77  https://dx.doi.org/10.20517/jtgg.2021.32  Page 275

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2021.


               REFERENCES
               1.       Welch HG, Albertsen PC. Reconsidering prostate cancer mortality - the future of PSA screening. N Engl J Med 2020;382:1557-63.
                   DOI  PubMed
               2.       Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2018;69:7-34.  DOI  PubMed
               3.       Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med
                   2016;22:298-305.  DOI  PubMed  PMC
               4.       Aparicio AM, Harzstark AL, Corn PG, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer
                   Res 2013;19:3621-30.  DOI  PubMed  PMC
               5.       Conteduca V, Oromendia C, Eng KW, et al. Clinical features of neuroendocrine prostate cancer. Eur J Cancer 2019;121:7-18.  DOI
                   PubMed  PMC
               6.       Spiess PE, Pettaway CA, Vakar-Lopez F, et al. Treatment outcomes of small cell carcinoma of the prostate: a single-center study.
                   Cancer 2007;110:1729-37.  DOI  PubMed
               7.       Tětu B, Ro JY, Ayala AG, Johnson DE, Logothetis CJ, Ordonez NG. Small cell carcinoma of the prostate part I a clinicopathologic
                   study of 20 cases. Cancer 1987;59:1803-9.  DOI  PubMed
               8.       Epstein JI, Amin MB, Beltran H, et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am
                   J Surg Pathol 2014;38:756-67.  DOI  PubMed  PMC
               9.       Dong B, Miao J, Wang Y, et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer.
                   Commun Biol 2020;3:778.  DOI  PubMed  PMC
               10.      Turbat-Herrera EA, Herrera GA, Gore I, Lott RL, Grizzle WE, Bonnin JM. Neuroendocrine differentiation in prostatic carcinomas. A
                   retrospective autopsy study. Arch Pathol Lab Med 1988;112:1100-5.  PubMed
               11.      Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine
                   prostate cancer: a multi-institutional prospective study. J Clin Oncol 2018;36:2492-503.  DOI  PubMed  PMC
               12.      Aparicio AM, Shen L, Tapia EL, et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate
                   cancers. Clin Cancer Res 2016;22:1520-30.  DOI  PubMed  PMC
               13.      George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015;524:47-53.  DOI  PubMed
                   PMC
               14.      Aggarwal  RR,  Quigley  DA,  Huang  J,  et  al.  Whole-genome  and  transcriptional  analysis  of  treatment-emergent  small-cell
                   neuroendocrine prostate cancer demonstrates intraclass heterogeneity. Mol Cancer Res 2019;17:1235-40.  DOI  PubMed  PMC
               15.      Quigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 2018;174:758-
                   69.e9.  DOI  PubMed  PMC
               16.      Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015;163:1011-25.  DOI
               17.      Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161:1215-28.  DOI
                   PubMed  PMC
               18.      Schlereth K, Heyl C, Krampitz AM, et al. Characterization of the p53 cistrome--DNA binding cooperativity dissects p53's tumor
                   suppressor functions. PLoS Genet 2013;9:e1003726.  DOI  PubMed  PMC
               19.      Macleod KF. The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer? J Clin Invest 2010;120:4179-82.
                   DOI  PubMed  PMC
               20.      Nava Rodrigues D, Casiraghi N, Romanel A, et al. RB1 heterogeneity in advanced metastatic castration-resistant prostate cancer. Clin
                   Cancer Res 2019;25:687-97.  DOI  PubMed
               21.      Nyquist MD, Corella A, Coleman I, et al. Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of
                   therapeutics and confers vulnerability to replication stress. Cell Rep 2020;31:107669.  DOI  PubMed  PMC
               22.      Sowalsky AG, Ye H, Bhasin M, et al. Neoadjuvant-intensive androgen deprivation therapy selects for prostate tumor foci with diverse
                   subclonal oncogenic alterations. Cancer Res 2018;78:4716-30.  DOI  PubMed  PMC
               23.      Mu P, Zhang Z, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate
                   cancer. Science 2017;355:84-8.  DOI  PubMed  PMC
               24.      Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen
                   resistance. Science 2017;355:78-83.  DOI  PubMed  PMC
               25.      Kareta MS, Gorges LL, Hafeez S, et al. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and
                   tumorigenesis. Cell Stem Cell 2015;16:39-50.  DOI  PubMed  PMC
               26.      Soundararajan R, Aparicio AM, Logothetis CJ, Mani SA, Maity SN. Function of tumor suppressors in resistance to antiandrogen
   65   66   67   68   69   70   71   72   73   74   75