Page 71 - Read Online
P. 71

Page 276          de Kouchkovsky et al. J Transl Genet Genom 2021;5:265-77  https://dx.doi.org/10.20517/jtgg.2021.32

                   therapy and luminal epithelial plasticity of aggressive variant neuroendocrine prostate cancers. Front Oncol 2018;8:69.  DOI  PubMed
                   PMC
               27.      Park JW, Lee JK, Sheu KM, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer
                   lineage. Science 2018;362:91-5.  DOI  PubMed  PMC
               28.      Zou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-
                   resistant prostate cancer. Cancer Discov 2017;7:736-49.  DOI  PubMed  PMC
               29.      Beltran H, Romanel A, Conteduca V, et al. Circulating tumor DNA profile recognizes transformation to castration-resistant
                   neuroendocrine prostate cancer. J Clin Invest 2020;130:1653-68.  DOI  PubMed  PMC
               30.      Adams EJ, Karthaus WR, Hoover E, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes.
                   Nature 2019;571:408-12.  DOI  PubMed  PMC
               31.      Smith BA, Sokolov A, Uzunangelov V, et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc Natl
                   Acad Sci U S A 2015;112:E6544-52.  DOI  PubMed  PMC
               32.      Labrecque MP, Coleman IM, Brown LG, et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic
                   castration-resistant prostate cancer. J Clin Invest 2019;129:4492-505.  DOI  PubMed  PMC
               33.      Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond.
                   Oncogene 2020;39:278-92.  DOI  PubMed  PMC
               34.      Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
                   Cell 2006;126:663-76.  DOI  PubMed
               35.      Kregel S, Kiriluk KJ, Rosen AM, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.
                   PLoS One 2013;8:e53701.  DOI  PubMed  PMC
               36.      Akamatsu S, Wyatt AW, Lin D, et al. The placental gene PEG10 Promotes progression of neuroendocrine prostate cancer. Cell Rep
                   2015;12:922-36.  DOI  PubMed
               37.      Kim S, Thaper D, Bidnur S, et al. PEG10 is associated with treatment-induced neuroendocrine prostate cancer. J Mol Endocrinol
                   2019;63:39-49.  DOI  PubMed
               38.      Verma S, Shankar E, Kalayci FNC, et al. Androgen deprivation induces transcriptional reprogramming in prostate cancer cells to
                   develop stem cell-like characteristics. Int J Mol Sci 2020;21:9568.  DOI  PubMed  PMC
               39.      Kwon OJ, Zhang L, Jia D, Xin L. Sox2 is necessary for androgen ablation-induced neuroendocrine differentiation from Pten null Sca-
                    +
                   1  prostate luminal cells. Oncogene 2021;40:203-14.  DOI  PubMed  PMC
               40.      Li H, Wang L, Li Z, et al. SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer. Lab Invest
                   2020;100:570-82.  DOI  PubMed
               41.      Berger A, Brady NJ, Bareja R, et al. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer.
                   J Clin Invest 2019;129:3924-40.  DOI  PubMed  PMC
               42.      Dardenne E, Beltran H, Benelli M, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate
                   cancer. Cancer Cell 2016;30:563-77.  DOI  PubMed  PMC
               43.      Yin Y, Xu L, Chang Y, et al. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially
                   regulating miR-421/ATM pathway. Mol Cancer 2019;18:11.  DOI  PubMed  PMC
               44.      Zhang W, Liu B, Wu W, et al. Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer. Clin
                   Cancer Res 2018;24:696-707.  DOI  PubMed  PMC
               45.      Parolia A, Cieslik M, Chu SC, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature
                   2019;571:413-8.  DOI  PubMed  PMC
               46.      Kim J, Jin H, Zhao JC, et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 2017;36:4072-80.  DOI
                   PubMed  PMC
               47.      Baca SC, Takeda DY, Seo JH, et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.
                   Nat Commun 2021;12:1979.  DOI  PubMed  PMC
               48.      Mirosevich J, Gao N, Matusik RJ. Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate
                   2005;62:339-52.  DOI  PubMed
               49.      Lee JK, Phillips JW, Smith BA, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells.
                   Cancer Cell 2016;29:536-47.  DOI  PubMed  PMC
               50.      Chiaverotti T, Couto SS, Donjacour A, et al. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic
                   adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 2008;172:236-46.  DOI  PubMed  PMC
               51.      Park JW, Lee JK, Witte ON, Huang J. FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the
                   prostate. Mod Pathol 2017;30:1262-72.  DOI  PubMed  PMC
               52.      Liu Q, Pang J, Wang LA, et al. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically
                   upregulating FOXA2. J Pathol 2021;253:106-18.  DOI  PubMed  PMC
               53.      Qi J, Nakayama K, Cardiff RD, et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine
                   phenotype and neuroendocrine prostate tumors. Cancer Cell 2010;18:23-38.  DOI  PubMed  PMC
               54.      Rotinen M, You S, Yang J, et al. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
                   Nat Med 2018;24:1887-98.  DOI  PubMed  PMC
               55.      Guo H, Ci X, Ahmed M, et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun 2019;10:278.  DOI  PubMed
                   PMC
               56.      Kleb B, Estécio MR, Zhang J, et al. Differentially methylated genes and androgen receptor re-expression in small cell prostate
   66   67   68   69   70   71   72   73   74   75   76