Page 71 - Read Online
P. 71
Page 276 de Kouchkovsky et al. J Transl Genet Genom 2021;5:265-77 https://dx.doi.org/10.20517/jtgg.2021.32
therapy and luminal epithelial plasticity of aggressive variant neuroendocrine prostate cancers. Front Oncol 2018;8:69. DOI PubMed
PMC
27. Park JW, Lee JK, Sheu KM, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer
lineage. Science 2018;362:91-5. DOI PubMed PMC
28. Zou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-
resistant prostate cancer. Cancer Discov 2017;7:736-49. DOI PubMed PMC
29. Beltran H, Romanel A, Conteduca V, et al. Circulating tumor DNA profile recognizes transformation to castration-resistant
neuroendocrine prostate cancer. J Clin Invest 2020;130:1653-68. DOI PubMed PMC
30. Adams EJ, Karthaus WR, Hoover E, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes.
Nature 2019;571:408-12. DOI PubMed PMC
31. Smith BA, Sokolov A, Uzunangelov V, et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc Natl
Acad Sci U S A 2015;112:E6544-52. DOI PubMed PMC
32. Labrecque MP, Coleman IM, Brown LG, et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic
castration-resistant prostate cancer. J Clin Invest 2019;129:4492-505. DOI PubMed PMC
33. Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond.
Oncogene 2020;39:278-92. DOI PubMed PMC
34. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
Cell 2006;126:663-76. DOI PubMed
35. Kregel S, Kiriluk KJ, Rosen AM, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.
PLoS One 2013;8:e53701. DOI PubMed PMC
36. Akamatsu S, Wyatt AW, Lin D, et al. The placental gene PEG10 Promotes progression of neuroendocrine prostate cancer. Cell Rep
2015;12:922-36. DOI PubMed
37. Kim S, Thaper D, Bidnur S, et al. PEG10 is associated with treatment-induced neuroendocrine prostate cancer. J Mol Endocrinol
2019;63:39-49. DOI PubMed
38. Verma S, Shankar E, Kalayci FNC, et al. Androgen deprivation induces transcriptional reprogramming in prostate cancer cells to
develop stem cell-like characteristics. Int J Mol Sci 2020;21:9568. DOI PubMed PMC
39. Kwon OJ, Zhang L, Jia D, Xin L. Sox2 is necessary for androgen ablation-induced neuroendocrine differentiation from Pten null Sca-
+
1 prostate luminal cells. Oncogene 2021;40:203-14. DOI PubMed PMC
40. Li H, Wang L, Li Z, et al. SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer. Lab Invest
2020;100:570-82. DOI PubMed
41. Berger A, Brady NJ, Bareja R, et al. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer.
J Clin Invest 2019;129:3924-40. DOI PubMed PMC
42. Dardenne E, Beltran H, Benelli M, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate
cancer. Cancer Cell 2016;30:563-77. DOI PubMed PMC
43. Yin Y, Xu L, Chang Y, et al. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially
regulating miR-421/ATM pathway. Mol Cancer 2019;18:11. DOI PubMed PMC
44. Zhang W, Liu B, Wu W, et al. Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer. Clin
Cancer Res 2018;24:696-707. DOI PubMed PMC
45. Parolia A, Cieslik M, Chu SC, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature
2019;571:413-8. DOI PubMed PMC
46. Kim J, Jin H, Zhao JC, et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 2017;36:4072-80. DOI
PubMed PMC
47. Baca SC, Takeda DY, Seo JH, et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.
Nat Commun 2021;12:1979. DOI PubMed PMC
48. Mirosevich J, Gao N, Matusik RJ. Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate
2005;62:339-52. DOI PubMed
49. Lee JK, Phillips JW, Smith BA, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells.
Cancer Cell 2016;29:536-47. DOI PubMed PMC
50. Chiaverotti T, Couto SS, Donjacour A, et al. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic
adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 2008;172:236-46. DOI PubMed PMC
51. Park JW, Lee JK, Witte ON, Huang J. FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the
prostate. Mod Pathol 2017;30:1262-72. DOI PubMed PMC
52. Liu Q, Pang J, Wang LA, et al. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically
upregulating FOXA2. J Pathol 2021;253:106-18. DOI PubMed PMC
53. Qi J, Nakayama K, Cardiff RD, et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine
phenotype and neuroendocrine prostate tumors. Cancer Cell 2010;18:23-38. DOI PubMed PMC
54. Rotinen M, You S, Yang J, et al. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
Nat Med 2018;24:1887-98. DOI PubMed PMC
55. Guo H, Ci X, Ahmed M, et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun 2019;10:278. DOI PubMed
PMC
56. Kleb B, Estécio MR, Zhang J, et al. Differentially methylated genes and androgen receptor re-expression in small cell prostate