Page 68 - Read Online
P. 68

Genvigir et al. J Transl Genet Genom 2020;4:320-55  I  http://dx.doi.org/10.20517/jtgg.2020.37                                   Page 353

                   mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Ther Drug Monit 2007;29:299-304.
               34.  Woillard JB, Rerolle JP, Picard N, Rousseau A, Drouet M, et al. Risk of diarrhoea in a long-term cohort of renal transplant patients given
                   mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br J Clin Pharmacol 2010;69:675-83.
               35.  Xie XC, Li J, Wang HY, Li HL, Liu J, et al. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil
                   pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol Sin 2015;36:644-50.
               36.  Kagaya H, Inoue K, Miura M, Satoh S, Saito M, et al. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid
                   pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 2007;63:279-88.
               37.  Geng F, Jiao Z, Dao YJ, Qiu XY, Ding JJ, et al. The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms
                   with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta
                   2012;413:683-90.
               38.  Li LQ, Chen DN, Li CJ, Li QP, Chen Y, et al. Impact of UGT2B7 and ABCC2 genetic polymorphisms on mycophenolic acid metabolism
                   in Chinese renal transplant recipients. Pharmacogenomics 2018;19:1323-34.
               39.  van Schaik RH, van Agteren M, de Fijter JW, Hartmann A, Schmidt J, et al. UGT1A9 -275T>A/-2152C>T polymorphisms correlate with
                   low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther 2009;86:319-27.
               40.  Zhao W, Fakhoury M, Deschênes G, Roussey G, Brochard K, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic
                   acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol 2010;50:1280-91.
               41.  Vu D, Tellez-Corrales E, Yang J, Qazi Y, Shah T, et al. Genetic polymorphisms of UGT1A8, UGT1A9 and HNF-1α and gastrointestinal
                   symptoms in renal transplant recipients taking mycophenolic acid. Transpl Immunol 2013;29:155-61.
               42.  Betônico GN, Abbud-Filho M, Goloni-Bertollo EM, Alvarenga MP, Guillemette C, et al. Influence of UDP-glucuronosyltransferase
                   polymorphisms on mycophenolate mofetil-induced side effects in kidney transplant patients. Transplant Proc 2008;40:708-10.
               43.  Prausa SE, Fukuda T, Maseck D, Curtsinger KL, Liu C, et al. UGT genotype may contribute to adverse events following medication with
                   mycophenolate mofetil in pediatric kidney transplant recipients. Clin Pharmacol Ther 2009;85:495-500.
               44.  Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, et al. Identification of common polymorphisms in the promoter of the
                   UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics
                   2004;14:501-15.
               45.  Kuypers DR, de Jonge H, Naesens M, de Loor H, Halewijck E, et al. Current target ranges of mycophenolic acid exposure and drug-
                   related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther 2008;30:673-83.
               46.  Sánchez-Fructuoso AI, Maestro ML, Calvo N, Viudarreta M, Pérez-Flores I, et al. The prevalence of uridine diphosphate-
                   glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence
                   on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant Proc 2009;41:2313-6.
               47.  Kuypers DR, Naesens M, Vermeire S, Vanrenterghem Y. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene
                   promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo
                   renal allograft recipients. Clin Pharmacol Ther 2005;78:351-61.
               48.  Baldelli S, Merlini S, Perico N, Nicastri A, Cortinovis M, et al. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the
                   pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 2007;8:1127-41.
               49.  Kiang TKL, Partovi N, Shapiro RJ, Berman JM, Collier AC, et al. Regression and genomic analyses on the association between dose-
                   normalized mycophenolic acid exposure and absolute neutrophil count in steroid-free, de novo kidney transplant recipients. Clin Drug
                   Investig 2018;38:1011-22.
               50.  Yu ZC, Zhou PJ, Wang XH, Françoise B, Xu D, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid
                   concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin 2017;38:1566-79.
               51.  Pazik J, Ołdak M, Dąbrowski M, Lewandowski Z, Sitarek E, et al. Association of UDP-glucuronosyltransferase 1A9 (UGT1A9) gene
                   polymorphism with kidney allograft function. Ann Transplant 2011;16:69-73.
               52.  Pazik J, Ołdak M, Lewandowski Z, Dąbrowski M, Podgórska M, et al. Recipient uridine 5’-diphospho-glucuronosyltransferase UGT1A9
                   c.98T>C variant determines transplanted kidney filtration rate. Transplant Proc 2014;46:2678-82.
               53.  Djebli N, Picard N, Rérolle JP, Le Meur Y, Marquet P. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and
                   comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics 2007;17:321-30.
               54.  van Agteren M, Armstrong VW, van Schaik RH, de Fijter H, Hartmann A, et al. AcylMPAG plasma concentrations and mycophenolic
                   acid-related side effects in patients undergoing renal transplantation are not related to the UGT2B7-840G>A gene polymorphism. Ther
                   Drug Monit 2008;30:439-44.
               55.  Cattaneo D, Perico N, Gaspari F, Gotti E, Remuzzi G. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney
                   transplantation. Kidney Int 2002;62:1060-7.
               56.  Duguay Y, Báár C, Skorpen F, Guillemette C. A novel functional polymorphism in the uridine diphosphate-glucuronosyltransferase 2B7
                   promoter with significant impact on promoter activity. Clin Pharmacol Ther 2004;75:223-33.
               57.  Yoo EC, Alvarez-Elías AC, Todorova EK, Filler G. Developmental changes of MPA exposure in children. Pediatr Nephrol 2016;31:975-82.
               58.  Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug
                   bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol 2014;10:1337-54.
               59.  Bouamar R, Hesselink DA, van Schaik RH, Weimar W, van der Heiden IP, et al. Mycophenolic acid-related diarrhea is not associated
                   with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients. Pharmacogenet Genomics 2012;22:399-407.
               60.  Treiber A, Schneiter R, Häusler S, Stieger B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as
                   the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 2007;35:1400-7.
   63   64   65   66   67   68   69   70   71   72   73