Page 69 - Read Online
P. 69

Page 354                                     Genvigir et al. J Transl Genet Genom 2020;4:320-55  I  http://dx.doi.org/10.20517/jtgg.2020.37

               61.  Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and
                   pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet 2010;49:141-75.
               62.  Naesens M, Kuypers DR, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic
                   acid exposure in renal allograft recipients. Transplantation 2006;82:1074-84.
               63.  Lloberas N, Torras J, Cruzado JM, Andreu F, Oppenheimer F, et al; Spanish Pharmacogenetic Symphony Substudy Group. Influence of
                   MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the pharmacogenomic substudy within the symphony study.
                   Nephrol Dial Transplant 2011;26:3784-93.
               64.  Božina N, Lalić Z, Nađ-Škegro S, Borić-Bilušić A, Božina T, et al. Steady-state pharmacokinetics of mycophenolic acid in renal transplant
                   patients: exploratory analysis of the effects of cyclosporine, recipients’ and donors’ ABCC2 gene variants, and their interactions. Eur J
                   Clin Pharmacol 2017;73:1129-40.
               65.  Miura M, Satoh S, Inoue K, Kagaya H, Saito M, et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on
                   mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 2007;63:1161-9.
               66.  Colom H, Lloberas N, Andreu F, Caldés A, Torras J, et al. Pharmacokinetic modeling of enterohepatic circulation of mycophenolic acid in
                   renal transplant recipients. Kidney Int 2014;85:1434-43.
               67.  Li TT, An JX, Xu JY, Tuo BG. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the
                   liver. World J Clin Cases 2019;7:3915-33.
               68.  Song W, Li D, Tao L, Luo Q, Chen L. Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B
                   2020;10:61-78.
               69.  Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 2009;158:693-705.
               70.  Wu TY, Peng Y, Pelleymounter LL, Moon I, Eckloff BW, et al. Pharmacogenetics of the mycophenolic acid targets inosine
                   monophosphate dehydrogenases IMPDH1 and IMPDH2: gene sequence variation and functional genomics. Br J Pharmacol
                   2010;161:1584-98.
               71.  Wang J, Yang JW, Zeevi A, Webber SA, Girnita DM, et al. IMPDH1 gene polymorphisms and association with acute rejection in renal
                   transplant patients. Clin Pharmacol Ther 2008;83:711-7.
               72.  Gensburger O, Van Schaik RH, Picard N, Le Meur Y, Rousseau A, et al. Polymorphisms in type I and II inosine monophosphate
                   dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genomics
                   2010;20:537-43.
               73.  Shah S, Harwood SM, Döhler B, Opelz G, Yaqoob MM. Inosine monophosphate dehydrogenase polymorphisms and renal allograft
                   outcome. Transplantation 2012;94:486-91.
               74.  Kagaya H, Miura M, Saito M, Habuchi T, Satoh S. Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and
                   mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic Clin Pharmacol Toxicol 2010;107:631-6.
               75.  Pazik J, Lewandowski Z, Nowacka Cieciura E, Ołdak M, Podgórska M, et al. Malnutrition risk in kidney recipients treated with
                   mycophenolate mofetil is associated with IMPDH1 rs2278294 polymorphism. Transplant Proc 2018;50:1794-7.
               76.  Wang J, Zeevi A, Webber S, Girnita DM, Addonizio L, et al. A novel variant L263F in human inosine 5’-monophosphate dehydrogenase
                   2 is associated with diminished enzyme activity. Pharmacogenet Genomics 2007;17:283-90.
               77.  Mohamed MF, Frye RF, Langaee TY. Interpopulation variation frequency of human inosine 5’-monophosphate dehydrogenase type II
                   (IMPDH2) genetic polymorphisms. Genet Test 2008;12:513-6.
               78.  Sombogaard F, van Schaik RH, Mathot RA, Budde K, van der Werf M, et al. Interpatient variability in IMPDH activity in MMF-treated
                   renal transplant patients is correlated with IMPDH type II 3757T>C polymorphism. Pharmacogenet Genomics 2009;19:626-34.
               79.  Winnicki W, Weigel G, Sunder-Plassmann G, Bajari T, Winter B, et al. An inosine 5’-monophosphate dehydrogenase 2 single-nucleotide
                   polymorphism impairs the effect of mycophenolic acid. Pharmacogenomics J 2010;10:70-6.
               80.  Pazik J, Ołdak M, Podgórska M, Lewandowski Z, Sitarek E, et al. Lymphocyte counts in kidney allograft recipients are associated with
                   IMPDH2 3757T>C gene polymorphism. Transplant Proc 2011;43:2943-5.
               81.  McDonagh EM, Whirl-Carrillo M, Garten Y, Altman RB, Klein TE. From pharmacogenomic knowledge acquisition to clinical
                   applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark Med 2011;5:795-806.
               82.  Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, et al. Pharmacogenomics knowledge for personalized medicine. Clin
                   Pharmacol Ther 2012;92:414-7.
               83.  Han N, Yun HY, Kim IW, Oh YJ, Kim YS, et al. Population pharmacogenetic pharmacokinetic modeling for flip-flop phenomenon of
                   enteric-coated mycophenolate sodium in kidney transplant recipients. Eur J Clin Pharmacol 2014;70:1211-9.
               84.  Zhang WX, Chen B, Jin Z, Yu Z, Wang X, et al. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic
                   polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica
                   2008;38:1422-36.
               85.  Olivera G, Sendra L, Herrero MJ, Berlanga P, Gargallo P, et al. Pharmacogenetics implementation in the clinics: information and
                   guidelines for germline variants. CDR 2019.
               86.  Messina E, Micheli V, Giacomello A. Guanine nucleotide depletion induces differentiation and aberrant neurite outgrowth in human
                   dopaminergic neuroblastoma lines: a model for basal ganglia dysfunction in Lesch-Nyhan disease. Neurosci Lett 2005;375:97-100.
               87.  Zhang J, Sun Z, Zhu Z, Yang J, Kang J, et al. Pharmacokinetics of mycophenolate mofetil and development of limited sampling strategy
                   in early kidney transplant recipients. Front Pharmacol 2018;9:908.
               88.  Marquet P. Counterpoint: is pharmacokinetic or pharmacodynamic monitoring of calcineurin inhibition therapy necessary? Clin Chem
                   2010;56:736-9.
   64   65   66   67   68   69   70   71   72   73   74