Page 67 - Read Online
P. 67

Page 352                                     Genvigir et al. J Transl Genet Genom 2020;4:320-55  I  http://dx.doi.org/10.20517/jtgg.2020.37

               4.   da Silva MB, da Cunha FF, Terra FF, Camara NO. Old game, new players: Linking classical theories to new trends in transplant
                   immunology. World J Transplant 2017;7:1-25.
               5.   Cooper M, Salvadori M, Budde K, Oppenheimer F, Sollinger H, et al. Enteric-coated mycophenolate sodium immunosuppression in renal
                   transplant patients: efficacy and dosing. Transplant Rev (Orlando) 2012;26:233-40.
               6.   Fujiyama N, Miura M, Kato S, Sone T, Isobe M, et al. Involvement of carboxylesterase 1 and 2 in the hydrolysis of mycophenolate
                   mofetil. Drug Metab Dispos 2010;38:2210-7.
               7.   Burg M, Säemann MD, Wieser C, Kramer S, Fischer W, et al. Enteric-coated mycophenolate sodium reduces gastrointestinal symptoms
                   in renal transplant patients. Transplant Proc 2009;41:4159-64.
               8.   van Gelder T, Hesselink DA. Mycophenolate revisited. Transpl Int 2015;28:508-15.
               9.   Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally
                   occurring variants. Drug Metab Dispos 2004;32:775-8.
               10.  Meier-Kriesche HU, Shaw LM, Korecka M, Kaplan B. Pharmacokinetics of mycophenolic acid in renal insufficiency. Ther Drug Monit
                   2000;22:27-30.
               11.  Shipkova M, Armstrong VW, Oellerich M, Wieland E. Acyl glucuronide drug metabolites: toxicological and analytical implications. Ther
                   Drug Monit 2003;25:1-16.
               12.  Picard N, Cresteil T, Prémaud A, Marquet P. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther
                   Drug Monit 2004;26:600-8.
               13.  Michelon H, König J, Durrbach A, Quteineh L, Verstuyft C, et al. SLCO1B1 genetic polymorphism influences mycophenolic acid
                   tolerance in renal transplant recipients. Pharmacogenomics 2010;11:1703-13.
               14.  Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, et al. The role of organic anion-transporting polypeptides and their common
                   genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther 2010;87:100-8.
               15.  Westley IS, Brogan LR, Morris RG, Evans AM, Sallustio BC. Role of Mrp2 in the hepatic disposition of mycophenolic acid and its
                   glucuronide metabolites: effect of cyclosporine. Drug Metab Dispos 2006;34:261-6.
               16.  Kobayashi M, Saitoh H, Kobayashi M, Tadano K, Takahashi Y, et al. Cyclosporin A, but not tacrolimus, inhibits the biliary excretion
                   of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J Pharmacol Exp Ther
                   2004;309:1029-35.
               17.  Jetter A, Kullak-Ublick GA. Drugs and hepatic transporters: a review. Pharmacol Res 2020;154:104234.
               18.  Wang J, Figurski M, Shaw LM, Burckart GJ. The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice. Transpl
                   Immunol 2008;19:192-6.
               19.  Patel CG, Ogasawara K, Akhlaghi F. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this
                   transport is not inhibited by cyclosporine, tacrolimus or sirolimus. Xenobiotica 2013;43:229-35.
               20.  Wang D, Zou L, Jin Q, Hou J, Ge G, et al. Human carboxylesterases: a comprehensive review. Acta Pharm Sin B 2018;8:699-712.
               21.  Fujiyama N, Miura M, Satoh S, Inoue K, Kagaya H, et al. Influence of carboxylesterase 2 genetic polymorphisms on mycophenolic acid
                   pharmacokinetics in Japanese renal transplant recipients. Xenobiotica 2009;39:407-14.
               22.  Cilião HL, Camargo-Godoy RBO, Souza MF, Zanuto A, Delfino VDA, et al. Polymorphisms in IMPDH2, UGT2B7, and CES2 genes
                   influence the risk of graft rejection in kidney transplant recipients taking mycophenolate mofetil. Mutat Res Genet Toxicol Environ
                   Mutagen 2018;836:97-102.
               23.  Satoh S, Tada H, Murakami M, Tsuchiya N, Li Z, et al. Circadian pharmacokinetics of mycophenolic Acid and implication of genetic
                   polymorphisms for early clinical events in renal transplant recipients. Transplantation 2006;82:486-93.
               24.  Genvigir FDV, Campos-Salazar AB, Felipe CR, Tedesco-Silva H Jr, Medina-Pestana JO, et al. CYP3A5*3 and CYP2C8*3 variants
                   influence exposure and clinical outcomes of tacrolimus-based therapy. Pharmacogenomics 2020;21:7-21.
               25.  Grinyó J, Vanrenterghem Y, Nashan B, Vincenti F, Ekberg H, et al. Association of four DNA polymorphisms with acute rejection after
                   kidney transplantation. Transpl Int 2008;21:879-91.
               26.  Grenda R, Prokurat S, Ciechanowicz A, Piatosa B, Kaliciński P. Evaluation of the genetic background of standard-immunosuppressant-
                   related toxicity in a cohort of 200 paediatric renal allograft recipients - a retrospective study. Ann Transplant 2009;14:18-24.
               27.  Varnell CD, Fukuda T, Kirby CL, Martin LJ, Warshaw BL, et al. Mycophenolate mofetil-related leukopenia in children and young adults
                   following kidney transplantation: influence of genes and drugs. Pediatr Transplant 2017;21:e13033.
               28.  Jacobson PA, Schladt D, Oetting WS, Leduc R, Guan W, et al; DeKAF investigators. Genetic determinants of mycophenolate-related
                   anemia and leukopenia after transplantation. Transplantation 2011;91:309-16.
               29.  Woillard JB, Picard N, Thierry A, Touchard G, Marquet P; DOMINOS study group. Associations between polymorphisms in
                   target, metabolism, or transport proteins of mycophenolate sodium and therapeutic or adverse effects in kidney transplant patients.
                   Pharmacogenet Genomics 2014;24:256-62.
               30.  Genvigir FDV, Nishikawa AM, Felipe CR, Tedesco-Silva H Jr, Oliveira N, et al. Influence of ABCC2, CYP2C8, and CYP2J2
                   polymorphisms on tacrolimus and mycophenolate sodium-based treatment in brazilian kidney transplant recipients. Pharmacotherapy
                   2017;37:535-45.
               31.  Bernard O, Tojcic J, Journault K, Perusse L, Guillemette C. Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7
                   metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos 2006;34:1539-45.
               32.  Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, et al. The UDP-glycosyltransferase (UGT) superfamily: new members,
                   new functions, and novel paradigms. Physiol Rev 2019;99:1153-222.
               33.  Inoue K, Miura M, Satoh S, Kagaya H, Saito M, et al. Influence of UGT1A7 and UGT1A9 intronic I399 genetic polymorphisms on
   62   63   64   65   66   67   68   69   70   71   72