Page 98 - Read Online
P. 98

Page 184                                            Sulaiman et al. J Transl Genet Genom 2020;4:159-87  I  https://doi.org/10.20517/jtgg.2020.27

               128. Docrat TF, Nagiah S, Naicker N, Baijnath S, Singh S, et al. The protective effect of metformin on mitochondrial dysfunction and
                   endoplasmic reticulum stress in diabetic mice brain. Eur J Pharmacol 2020;875:173059.
               129. Umbria M, Ramos A, Aluja MP, Santos C. The role of control region mitochondrial DNA mutations in cardiovascular disease: stroke and
                   myocardial infarction. Sci Rep 2020;10:2766.
               130. Hirata Y, Inoue A, Suzuki S, Takahashi M, Matsui R, et al. Trans-Fatty acids facilitate DNA damage-induced apoptosis through the
                   mitochondrial JNK-Sab-ROS positive feedback loop. Sci Rep 2020;10:2743.
               131. Aguilar-López BA, Moreno-Altamirano MMB, Dockrell HM, Duchen MR, Sánchez-García FJ. Mitochondria: an integrative Hub
                   coordinating circadian rhythms, metabolism, the microbiome, and immunity. Front Cell Dev Biol 2020;8:51.
               132. Yang S, Liu Y, Guo Y, Liu R, Qi F, et al. Circadian gene clock participates in mitochondrial apoptosis pathways by regulating
                   mitochondrial membrane potential, mitochondria out membrane permeablization and apoptosis factors in AML12 hepatocytes. Mol Cell
                   Biochem 2020; doi: 10.1007/s11010-020-03701-1.
               133. Sardon Puig L, Valera-Alberni M, Cantó C, Pillon NJ. Circadian rhythms and mitochondria: connecting the dots. Front genet 2018;9:452.
               134. Rahman A, Hasan AU, Nishiyama A, Kobori H. Altered circadian timing system-mediated non-dipping pattern of blood pressure and
                   associated cardiovascular disorders in metabolic and kidney diseases. Int J Mol Sci 2018;19:400.
               135. Gombert M, Carrasco-Luna J, Pin-Arboledas G, Codoñer-Franch P. The connection of circadian rhythm to inflammatory bowel disease.
                   Trans Res 2019;206:107-18.
               136. Maiese K. Moving to the rhythm with clock (Circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr
                   Neurovasc Res 2017;14:299-304.
               137. Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet
                   Neurol 2019;18:307-18.
               138. Takaguri A, Sasano J, Akihiro O, Satoh K. The role of circadian clock gene BMAL1 in vascular proliferation. Eur J Pharmacol
                   2020;872:172924.
               139. Škrlec I, Milić J, Steiner R. The impact of the circadian genes CLOCK and ARNTL on myocardial infarction. J Clin Med 2020;9:484.
               140. Zhang ZQ, Ding JW, Wang XA, Luo CY, Yu B, et al. Abnormal circadian rhythms are associated with plaque instability in acute coronary
                   syndrome patients. Int J Clin Exp Pathol 2019;12:3761-71.
               141. Wang XB, Cui NH, Liu Xn, Liu X. Mitochondrial 8-hydroxy-2’-deoxyguanosine and coronary artery disease in patients with type 2
                   diabetes mellitus. Cardiovasc Diabetol 2020;19:22.
               142. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012;21:297-308.
               143. Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit
                   Rev Biochem Mol Biol 2018;53:667-82.
               144. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, et al. The regulation of AMPK β1, TSC2, and PTEN Expression by p53: stress, cell
                   and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007;67:3043-53.
               145. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science
                   2010;330:1340-4.
               146. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res
                   2004;64:3892-9.
               147. Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2014;71:2577-604.
               148. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and
                   transformation. Oncogene 2005;24:6314-22.
               149. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer
                   Cell 2005;8:311-21.
               150. Land SC, Tee AR. Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling
                   motif. J Biolog Chem 2007;282:20534-43.
               151. Sakamoto T, Weng JS, Hara T, Yoshino S, Kozuka-Hata H, et al. Hypoxia-inducible factor 1 regulation through cross talk between mTOR
                   and MT1-MMP. Mol Cell Biol 2014;34:30-42.
               152. Kietzmann T, Mennerich D, Dimova EY. Hypoxia-inducible factors (HIFs) and Phosphorylation: impact on stability, localization, and
                   transactivity. Front Cell Dev Biol 2016;4.
               153. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating
                   mitochondrial oxygen consumption. Cell Metab 2006;3:187-97.
               154. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch
                   required for cellular adaptation to hypoxia. Cell Metab 2006;3:177-85.
               155. Le A, Lane AN, Hamaker M, Bose S, Gouw A, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and
                   survival in B cells. Cell Metab 2012;15:110-21.
               156. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic
                   transformation. Cancer cell 2010;18:207-19.
               157. Itahana Y, Itahana K. Emerging roles of p53 family members in glucose metabolism. Int J Mol Sci 2018;19:776.
               158. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and
                   GLUT4 gene expression. Cancer Res 2004;64:2627-33.
               159. Boidot R, Végran F, Meulle A, Le Breton A, Dessy C, et al. Regulation of monocarboxylate transporter MCT1 expression by p53
                   mediates inward and outward lactate fluxes in tumors. Cancer Res 2012;72:939-48.
   93   94   95   96   97   98   99   100   101   102   103