Page 101 - Read Online
P. 101

Sulaiman et al. J Transl Genet Genom 2020;4:159-87  I  https://doi.org/10.20517/jtgg.2020.27                                          Page 187

               224. Gropman AL. Neuroimaging in mitochondrial disorders. Neurotherapeutics 2013;10:273-85.
               225. Lunsing RJ, Strating K, de Koning TJ, Sijens PE. Diagnostic value of MRS-quantified brain tissue lactate level in identifying children
                   with mitochondrial disorders. Eur Radiol 2017;27:976-84.
               226. Chi CS, Lee HF, Tsai CR, Chen WS, Tung JN, et al. Lactate peak on brain MRS in children with syndromic mitochondrial diseases. J
                   Chin Med Assoc 2011;74:305-9.
               227. Dinopoulos A, Cecil KM, Schapiro MB, Papadimitriou A, Hadjigeorgiou GM, et al. Brain MRI and proton MRS findings in infants and
                   children with respiratory chain defects. Neuropediatrics 2005;36:290-301.
               228. Matthews PM, Allaire C, Shoubridge EA, Karpati G, Carpenter S, et al. In vivo muscle magnetic resonance spectroscopy in the clinical
                   investigation of mitochondria1 disease. Neurology 1991;41:114.
               229. Saito S, Takahashi Y, Ohki A, Shintani Y, Higuchi T. Early detection of elevated lactate levels in a mitochondrial disease model using
                   chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) at 7T-MRI. Radiol Phys Technol 2019;12:46-
                   54.
               230. Farina L, Chiapparini L, Uziel G, Bugiani M, Zeviani M, et al. MR findings in Leigh syndrome with COX deficiency and SURF-1
                   mutations. Am J neuroradiol 2002;23:1095-100.
               231. Bluml S, Seymour KJ, Ross BD. Developmental changes in choline- and ethanolamine-containing compounds measured with proton-
                   decoupled (31)P MRS in in vivo human brain. Magn Reson Med 1999;42:643-54.
               232. Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, et al. Regional age dependence of human brain metabolites from infancy to
                   adulthood as detected by quantitative localized proton MRS. Pediatric Res 1999;46:474-85.
               233. Thompson K, Majd H, Dallabona C, Reinson K, King MS, et al. Recurrent de novo dominant mutations in SLC25A4 cause severe early-
                   onset mitochondrial disease and loss of mitochondrial DNA copy number. Am J Hum Genet 2016;99:860-76.
               234. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature
                   2015;519:223-8.
               235. Griffin BH, Chitty LS, Bitner-Glindzicz M. The 100 000 genomes project: what it means for paediatrics. Arch Dis Child Educ Pract Ed
                   2017;102:105-7.
               236. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet
                   2015;16:530-42.
               237. Perales-Clemente E, Cook AN, Evans JM, Roellinger S, Secreto F, et al. Natural underlying mtDNA heteroplasmy as a potential source of
                   intra-person hiPSC variability. EMBO J 2016;35:1979-90.
               238. Hall AM, Vilasi A, Garcia-Perez I, Lapsley M, Alston CL, et al. The urinary proteome and metabonome differ from normal in adults with
                   mitochondrial disease. Kidney Int 2015;87:610-22.
               239. Wettmarshausen J, Perocchi F. Isolation of functional mitochondria from cultured cells and mouse tissues. Mitochondria: Practical
                   Protocols. New York: Springer New York; 2017. pp.15-32.
               240. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat
                   Protoc 2007;2:287-95.
               241. Tang B, Zhao L, Liang R, Zhang Y, Wang L. Magnetic nanoparticles: an improved method for mitochondrial isolation. Mol Med Rep
                   2012;5:1271-6.
               242. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, et al. A mitochondrial protein compendium elucidates complex I disease biology.
                   Cell 2008;134:112-23.
               243. Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, et al. Integrated analysis of protein composition, tissue diversity, and
                   gene regulation in mouse mitochondria. Cell 2003;115:629-40.
               244. Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, et al. A mammalian organelle map by protein correlation profiling. Cell 2006;125:187-
                   99.
               245. Costain G, Jobling R, Walker S, Reuter MS, Snell M, et al. Periodic reanalysis of whole-genome sequencing data enhances the diagnostic
                   advantage over standard clinical genetic testing. Eur J Hum Genet 2018;26:740-4.
               246. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders.
                   N Engl J Med 2013;369:1502-11.
               247. Sun Y, Xiang J, Liu Y, Chen S, Yu J, et al. Increased diagnostic yield by reanalysis of data from a hearing loss gene panel. BMC Med
                   Genom 2019;12:76.
               248. Salfati EL, Spencer EG, Topol SE, Muse ED, Rueda M, et al. Re-analysis of whole-exome sequencing data uncovers novel diagnostic
                   variants and improves molecular diagnostic yields for sudden death and idiopathic diseases. Genome Med 2019;11:83.
               249. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, et al. ClinGen--the clinical genome resource. N Engl J Med 2015;372:2235-
                   42.
               250. Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, et al. ClinVar: improvements to accessing data. Nucleic Acids Res 2019;48:D835-
                   44.
   96   97   98   99   100   101   102   103   104   105   106