Page 100 - Read Online
P. 100

Page 186                                           Sulaiman et al. J Transl Genet Genom 2020;4:159-87  I  https://doi.org/10.20517/jtgg.2020.27

               193. Sosa MX, Sivakumar IKA, Maragh S, Veeramachaneni V, Hariharan R, et al. Next-generation sequencing of human mitochondrial
                   reference genomes uncovers high heteroplasmy frequency. PLoS Comput Biol 2012;8:e1002737.
               194. Dayama G, Emery SB, Kidd JM, Mills RE. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic
                   Acids Res 2014;42:12640-9.
               195. Picardi E, Pesole G. Mitochondrial genomes gleaned from human whole-exome sequencing. Nat Methods 2012;9:523-4.
               196. Guo Y, Li J, Li CI, Shyr Y, Samuels DC. MitoSeek: extracting mitochondria information and performing high-throughput mitochondria
                   sequencing analysis. Bioinformatics 2013;29:1210-1.
               197. Falk MJ, Shen L, Gonzalez M, Leipzig J, Lott MT, et al. Mitochondrial disease sequence data resource (MSeqDR): a global grass-roots
                   consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and
                   research communities. Mol Genet Metabol 2015;114:388-96.
               198. Kogelnik AM, Lott MT, Brown MD, Navathe SB, Wallace DC. MITOMAP: a human mitochondrial genome database. Nucleic acids Res
                   1996;24:177-9.
               199. Preste R, Vitale O, Clima R, Gasparre G, Attimonelli M. HmtVar: a new resource for human mitochondrial variations and pathogenicity
                   data. Nucleic Acids Res 2019;47:D1202-10.
               200. Clima R, Preste R, Calabrese C, Diroma MA, Santorsola M, et al. HmtDB 2016: data update, a better performing query system and
                   human mitochondrial DNA haplogroup predictor. Nucleic Acids Res 2017;45:D698-706.
               201. Rahman J, Noronha A, Thiele I, Rahman S. Leigh map: a novel computational diagnostic resource for mitochondrial disease. Ann Neurol
                   2017;81:9-16.
               202. Abicht A, Scharf F, Kleinle S, Schön U, Holinski-Feder E, et al. Mitochondrial and nuclear disease panel (Mito-aND-Panel): combined
                   sequencing of mitochondrial and nuclear DNA by a cost-effective and sensitive NGS-based method. Mol Genet Genomic Med
                   2018;6:1188-98.
               203. Dames S, Chou LS, Xiao Y, Wayman T, Stocks J, et al. The development of next-generation sequencing assays for the mitochondrial
                   genome and 108 nuclear genes associated with mitochondrial disorders. J Mol Diagnos 2013;15:526-34.
               204. Pereira V, Longobardi A, Borsting C. Sequencing of mitochondrial genomes using the precision ID mtDNA whole genome panel.
                   Electrophoresis 2018;39:2766-75.
               205. Marquis J, Lefebvre G, Kourmpetis YAI, Kassam M, Ronga F, et al. MitoRS, a method for high throughput, sensitive, and accurate
                   detection of mitochondrial DNA heteroplasmy. BMC Genomics 2017;18:326.
               206. Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat
                   Commun 2017;8:15824.
               207. Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, et al. Improving genetic diagnosis in Mendelian disease with
                   transcriptome sequencing. Sci Transl Med 2017;9:eaal5209.
               208. Gómez-Serrano M, Camafeita E, Loureiro M, Peral B. Mitoproteomics: tackling mitochondrial dysfunction in human disease. Oxid Med
                   Cell Longev 2018;2018:1435934.
               209. Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res
                   2016;44:D1251-7.
               210. Scharfe C, Zaccaria P, Hoertnagel K, Jaksch M, Klopstock T, et al. MITOP: database for mitochondria-related proteins, genes and
                   diseases. Nucleic Acids Res 1999;27:153-5.
               211.  Cotter D, Guda P, Fahy E, Subramaniam S. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic
                   Acids Res 2004;32:D463-7.
               212. Elstner M, Andreoli C, Ahting U, Tetko I, Klopstock T, et al. MitoP2: an integrative tool for the analysis of the mitochondrial proteome.
                   Mol Biotechnol 2008;40:306-15.
               213. Smith AC, Robinson AJ. MitoMiner, an integrated database for the storage and analysis of mitochondrial proteomics data. Mol Cell
                   Proteomics 2009;8:1324-37.
               214. Floyd BJ, Wilkerson EM, Veling MT, Minogue CE, Xia C, et al. Mitochondrial protein interaction mapping identifies regulators of
                   respiratory chain function. Mol Cell 2016;63:621-32.
               215. Lake NJ, Webb BD, Stroud DA, Richman TR, Ruzzenente B, et al. Biallelic mutations in MRPS34 lead to instability of the small
                   mitoribosomal subunit and leigh syndrome. Am J Hum Genet 2017;101:239-54.
               216. Debray FG, Mitchell GA, Allard P, Robinson BH, Hanley JA, et al. Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the
                   differential diagnosis of congenital lactic acidosis. Clin Chem 2007;53:916-21.
               217. Finsterer J, Eichberger H, Jarius C, Boltzmann L. Lactate-stress testing in 54 patients with mitochondriopathy. Eur Arch Psychiatry Clin
                   Neurosci 2000;250:36-9.
               218. Finsterer J, Milvay E. Stress lactate in mitochondrial myopathy under constant, unadjusted workload. Eur J Neurol 2004;11:811-6.
               219. Thompson Legault J, Strittmatter L, Tardif J, Sharma R, Tremblay-Vaillancourt V, et al. A metabolic signature of mitochondrial
                   dysfunction revealed through a monogenic form of leigh syndrome. Cell Rep 2015;13:981-9.
               220. Rodenburg RJ. The functional genomics laboratory: functional validation of genetic variants. J Inherit Metab Dis 2018;41:297-307.
               221. Gasperskaja E, Kučinskas V. The most common technologies and tools for functional genome analysis. Acta Med Litu 2017;24:1-11.
               222. Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, et al. Recent advances in understanding the molecular genetic basis of
                   mitochondrial disease. J Inherit Metab Dis 2020;43:36-50.
               223. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.
                   Science 2015;348:648-60.
   95   96   97   98   99   100   101   102   103   104   105