Page 55 - Read Online
P. 55
Marti et al. J Transl Genet Genom 2020;4:104-13 I http://dx.doi.org/10.20517/jtgg.2020.10 Page 113
37. Bi W, Yan J, Stankiewicz P, Park SS, Walz K, et al. Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome
17p11.2 and the syntenic region of the mouse. Genome Res 2002;12:713-28.
38. Ramirez-Solis R, Liu P, Bradley A. Chromosome engineering in mice. Nature 1995;378:720-4.
39. Zheng B, Mills AA, Bradley A. A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements
in mice. Nucleic Acids Res 1999;27:2354-60.
40. Walz K, Caratini-Rivera S, Bi W, Fonseca P, Mansouri DL, et al. Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene
syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 2003;23:3646-55.
41. Bi W, Ohyama T, Nakamura H, Yan J, Visvanathan J, et al. Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome
engineered mouse models for Smith-Magenis syndrome. Hum Mol Genet 2005;14:983-95.
42. Walz K, Paylor R, Yan J, Bi W, Lupski JR. Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)
(p11.2p11.2). J Clin Invest 2006;116:3035-41.
43. Ricard G, Molina J, Chrast J, Gu W, Gheldof N, et al. Phenotypic consequences of copy number variation: insights from Smith-Magenis
and Potocki-Lupski syndrome mouse models. PLoS Biol 2010;8:e1000543.
44. Birling MC, Schaeffer L, Andre P, Lindner L, Marechal D, et al. Efficient and rapid generation of large genomic variants in rats and mice
using CRISMERE. Sci Rep 2017;7:43331.
45. Birling MC, Herault Y, Pavlovic G. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm Genome
2017;28:291-301.
46. Ishibashi M, Manning E, Shoubridge C, Krecsmarik M, Hawkins TA, et al. Copy number variants in patients with intellectual disability
affect the regulation of ARX transcription factor gene. Hum Genet 2015;134:1163-82.
47. Borrie SC, Brems H, Legius E, Bagni C. Cognitive dysfunctions in intellectual disabilities: the contributions of the ras-MAPK and PI3K-
AKT-mTOR pathways. Annu Rev Genomics Hum Genet 2017;18:115-42.
48. Schubbert S, Bollag G, Shannon K. Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Curr Opin Genet
Dev 2007;17:15-22.
49. Wang L, Zhou K, Fu Z, Yu D, Huang H, et al. Brain development and akt signaling: the crossroads of signaling pathway and
neurodevelopmental diseases. J Mol Neurosci 2017;61:379-84.
50. Dobyns WB, Mirzaa GM. Megalencephaly syndromes associated with mutations of core components of the PI3K-AKT-MTOR pathway:
PIK3CA, PIK3R2, AKT3, and MTOR. Am J Med Genet C Semin Med Genet 2019;181:582-90.
51. Ba W, van der Raadt J, Nadif Kasri N. Rho GTPase signaling at the synapse: implications for intellectual disability. Exp Cell Res
2013;319:2368-74.
52. Chia PH, Zhong FL, Niwa S, Bonnard C, Utami KH, et al. A homozygous loss-of-function CAMK2A mutation causes growth delay,
frequent seizures and severe intellectual disability. Elife 2018;7:e32451.
53. Agarwal M, Johnston MV, Stafstrom CE. SYNGAP1 mutations: clinical, genetic, and pathophysiological features. Int J Dev Neurosci
2019;78:65-76.
54. Chen ES, Gigek CO, Rosenfeld JA, Diallo AB, Maussion G, et al. Molecular convergence of neurodevelopmental disorders. Am J Hum
Genet 2014;95:490-508.
55. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, et al. Shared molecular neuropathology across major psychiatric disorders
parallels polygenic overlap. Science 2018;359:693-7.
56. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology.
Nature 2011;474:380-4.
57. Frega M, Selten M, Mossink B, Keller JM, Linda K, et al. Distinct pathogenic genes causing intellectual disability and autism exhibit a
common neuronal network hyperactivity phenotype. Cell Rep 2020;30:173-86.e6.
58. Gallegos DA, Chan U, Chen LF, West AE. Chromatin regulation of neuronal maturation and plasticity. Trends Neurosci 2018;41:311-24.
59. Keil KP, Lein PJ. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders?
Environ Epigenet 2016;2:dvv01210.
60. Barbosa M, Joshi RS, Garg P, Martin-Trujillo A, Patel N, et al. Identification of rare de novo epigenetic variations in congenital disorders.
Nat Commun 2018;9:2064.
61. Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, et al. Diagnostic utility of genome-wide DNA methylation testing in
genetically unsolved individuals with suspected hereditary conditions. Am J Hum Genet 2019;104:685-700.
62. Kleefstra T, Schenck A, Kramer JM, van Bokhoven H. The genetics of cognitive epigenetics. Neuropharmacology 2014;80:83-94.
63. Bjornsson HT. The mendelian disorders of the epigenetic machinery. Genome Res 2015;25:1473-81.
64. Gabriele M, Lopez Tobon A, D’Agostino G, Testa G. The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction
along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018;84:306-27.
65. Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum Mol
Genet 2019;28:R254-64.
66. Tatton-Brown K, Seal S, Ruark E, Harmer J, Ramsay E, et al. Mutations in the DNA methyltransferase gene DNMT3A cause an
overgrowth syndrome with intellectual disability. Nat Genet 2014;46:385-8.
67. Tatton-Brown K, Loveday C, Yost S, Clarke M, Ramsay E, et al. Mutations in epigenetic regulation genes are a major cause of
overgrowth with intellectual disability. Am J Hum Genet 2017;100:725-36.
68. Uddin M, Wang Y, Woodbury-Smith M. Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digit Med
2019;2:112.
69. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet 2018;19:581-90.