Page 35 - Read Online
P. 35

Brault et al. J Transl Genet Genom. 2025;9:1-10  https://dx.doi.org/10.20517/jtgg.2024.83  Page 9

               51.      Goncalves RLS, Schlame M, Bartelt A, Brand MD, Hotamışlıgil GS. Cardiolipin deficiency in Barth syndrome is not associated with
                   increased superoxide/H O  production in heart and skeletal muscle mitochondria. FEBS Lett. 2021;595:415-32.  DOI  PubMed  PMC
                                  2  2
               52.      Zhu S, Chen Z, Zhu M, et al. Cardiolipin remodeling defects impair mitochondrial architecture and function in a murine model of
                   Barth syndrome cardiomyopathy. Circ Heart Fail. 2021;14:e008289.  DOI  PubMed  PMC
               53.      Chowdhury A, Boshnakovska A, Aich A, et al. Metabolic switch from fatty acid oxidation to glycolysis in knock-in mouse model of
                   Barth syndrome. EMBO Mol Med. 2023;15:e17399.  DOI  PubMed  PMC
               54.      Pacak CA, Suzuki-Hatano S, Khadir F, et al. One episode of low intensity aerobic exercise prior to systemic AAV9 administration
                   augments transgene delivery to the heart and skeletal muscle. J Transl Med. 2023;21:748.  DOI  PubMed  PMC
               55.      Liang Z, Ralph-Epps T, Schmidtke MW, et al. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of
                   pyruvate dehydrogenase activity reduction in tafazzin-deficient cells. Sci Rep. 2024;14:11497.  DOI  PubMed  PMC
               56.      Ferrara PJ, Lang MJ, Johnson JM, et al. Weight loss increases skeletal muscle mitochondrial energy efficiency in obese mice. Life
                   Metab. 2023;2:load014.  DOI  PubMed  PMC
               57.      Dudek J, Cheng IF, Chowdhury A, et al. Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome. EMBO Mol Med.
                   2016;8:139-54.  DOI  PubMed  PMC
               58.      Soustek MS, Baligand C, Falk DJ, Walter GA, Lewin AS, Byrne BJ. Endurance training ameliorates complex 3 deficiency in a mouse
                   model of Barth syndrome. J Inherit Metab Dis. 2015;38:915-22.  DOI
                                                                       2+
               59.      Liu X, Wang S, Guo X, et al. Increased reactive oxygen species-mediated Ca /calmodulin-dependent protein kinase II activation
                   contributes to calcium handling abnormalities and impaired contraction in Barth syndrome. Circulation. 2021;143:1894-911.  DOI
                   PubMed  PMC
               60.      He Q, Harris N, Ren J, Han X. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in
                   cardiac myocytes. Oxid Med Cell Longev. 2014;2014:654198.  DOI  PubMed  PMC
               61.      Greenwell AA, Tabatabaei Dakhili SA, Ussher JR. Myocardial disturbances of intermediary metabolism in Barth syndrome. Front
                   Cardiovasc Med. 2022;9:981972.  DOI  PubMed  PMC
               62.      Milon L, Meyer P, Chiadmi M, et al. The human nm23-H4 gene product is a mitochondrial nucleoside diphosphate kinase. J Biol
                   Chem. 2000;275:14264-72.  DOI
               63.      Tokarska-Schlattner M, Boissan M, Munier A, et al. The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial
                   membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration. J Biol Chem. 2008;283:26198-207.  DOI
                   PubMed  PMC
               64.      Meyer RA, Sweeney HL, Kushmerick MJ. A simple analysis of the “phosphocreatine shuttle”. Am J Physiol. 1984;246:C365-77.  DOI
                   PubMed
               65.      Schlattner U, Gehring F, Vernoux N, et al. C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine
                   kinase. J Biol Chem. 2004;279:24334-42.  DOI
               66.      Schlattner U, Tokarska-Schlattner M, Ramirez S, et al. Dual function of mitochondrial Nm23-H4 protein in phosphotransfer and
                   intermembrane lipid transfer: a cardiolipin-dependent switch. J Biol Chem. 2013;288:111-21.  DOI  PubMed  PMC
               67.      Schlattner U, Tokarska-Schlattner M, Rousseau D, et al. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane
                   contact site complexes and lipid transfer proteins. Chem Phys Lipids. 2014;179:32-41.  DOI
               68.      Gonzalvez F, D’Aurelio M, Boutant M, et al. Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis
                   inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim Biophys Acta. 2013;1832:1194-
                   206.  DOI
               69.      Aryal B, Rao VA. Deficiency in cardiolipin reduces doxorubicin-induced oxidative stress and mitochondrial damage in human B-
                   lymphocytes. PLoS One. 2016;11:e0158376.  DOI  PubMed  PMC
               70.      Wang G, McCain ML, Yang L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem
                   cell and heart-on-chip technologies. Nat Med. 2014;20:616-23.  DOI
               71.      He Q. Tafazzin knockdown causes hypertrophy of neonatal ventricular myocytes. Am J Physiol Heart Circ Physiol. 2010;299:H210-6.
                   DOI  PubMed
               72.      He Q, Wang M, Harris N, Han X. Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts.
                   Am J Physiol Heart Circ Physiol. 2013;305:H1332-43.  DOI
               73.      Suzuki-Hatano S, Sriramvenugopal M, Ramanathan M, et al. Increased mtDNA abundance and improved function in human Barth
                   syndrome patient fibroblasts following AAV-TAZ gene delivery. Int J Mol Sci. 2019;20:3416.  DOI  PubMed  PMC
               74.      Gürtler S, Wolke C, Otto O, et al. Tafazzin-dependent cardiolipin composition in C6 glioma cells correlates with changes in
                   mitochondrial and cellular functions, and cellular proliferation. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:452-65.  DOI
               75.      Rua AJ, Mitchell W, Claypool SM, Alder NN, Alexandrescu AT. Perturbations in mitochondrial metabolism associated with defective
                   cardiolipin biosynthesis: an in-organello real-time NMR study. J Biol Chem. 2024;300:107746.  DOI  PubMed  PMC
               76.      Huang Y, Powers C, Madala SK, et al. Cardiac metabolic pathways affected in the mouse model of Barth syndrome. PLoS One.
                   2015;10:e0128561.  DOI  PubMed  PMC
               77.      Wang S, Li Y, Xu Y, et al. AAV gene therapy prevents and reverses heart failure in a murine knockout model of Barth syndrome. Circ
                   Res. 2020;126:1024-39.  DOI  PubMed  PMC
               78.      Snider PL, Sierra Potchanant EA, Matias C, Edwards DM, Brault JJ, Conway SJ. The loss of tafazzin Transacetylase activity is
                   sufficient to drive testicular infertility. J Dev Biol. 2024;12:32.  DOI  PubMed  PMC
   30   31   32   33   34   35   36   37   38   39   40