Page 33 - Read Online
P. 33

Brault et al. J Transl Genet Genom. 2025;9:1-10  https://dx.doi.org/10.20517/jtgg.2024.83  Page 7

               Conflicts of interest
               Both authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth
                   syndrome. Nat Genet. 1996;12:385-9.  DOI  PubMed
               2.       Neuwald AF. Barth syndrome may be due to an acyltransferase deficiency. Curr Biol. 1997;7:R465-6.  DOI
               3.       Barth PG, Scholte HR, Berden JA, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil
                   leucocytes. J Neurol Sci. 1983;62:327-55.  DOI  PubMed
               4.       Bissler JJ, Tsoras M, Göring HH, et al. Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural
                   malformations of mitochondria in heart, liver, and skeletal muscle. Lab Invest. 2002;82:335-44.  DOI
               5.       Roberts AE, Nixon C, Steward CG, et al. The Barth syndrome registry: distinguishing disease characteristics and growth data from a
                   longitudinal study. Am J Med Genet A. 2012;158A:2726-32.  DOI
               6.       Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin
                   formation and central to the etiology of Barth syndrome. Gene. 2020;726:144148.  DOI  PubMed  PMC
               7.       Taylor C, Rao ES, Pierre G, et al. Clinical presentation and natural history of Barth syndrome: an overview. J Inherit Metab Dis.
                   2022;45:7-16.  DOI
               8.       Bashir A, Bohnert KL, Reeds DN, et al. Impaired cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults
                   with Barth syndrome. Physiol Rep. 2017;5:e13130.  DOI  PubMed  PMC
               9.       Spencer CT, Byrne BJ, Bryant RM, et al. Impaired cardiac reserve and severely diminished skeletal muscle O  utilization mediate
                                                                                            2
                   exercise intolerance in Barth syndrome. Am J Physiol Heart Circ Physiol. 2011;301:H2122-9.  DOI
               10.      Mazzocco MM, Henry AE, Kelly RI. Barth syndrome is associated with a cognitive phenotype. J Dev Behav Pediatr. 2007;28:22-30.
                   DOI  PubMed  PMC
               11.      Cade WT, Bohnert KL, Peterson LR, et al. Blunted fat oxidation upon submaximal exercise is partially compensated by enhanced
                   glucose metabolism in children, adolescents, and young adults with Barth syndrome. J Inherit Metab Dis. 2019;42:480-93.  DOI
                   PubMed  PMC
               12.      Kenneson A, Huang Y, Lontok E, Marjoram L. The diagnostic odyssey, clinical burden, and natural history of Barth syndrome: an
                   analysis of patient registry data. J Transl Genet Genom. 2024;8:285-98.  DOI
               13.      Chu XY, Xu YY, Tong XY, Wang G, Zhang HY. The legend of ATP: from origin of life to precision medicine. Metabolites.
                   2022;12:461.  DOI  PubMed  PMC
               14.      Wiseman RW, Brown CM, Beck TW, et al. Creatine kinase equilibration and ΔG(ATP) over an extended range of physiological
                   conditions: implications for cellular energetics, signaling, and muscle performance. Int J Mol Sci. 2023;24:13244.  DOI  PubMed
                   PMC
               15.      Schmidt CA, Fisher-Wellman KH, Neufer PD. From OCR and ECAR to energy: perspectives on the design and interpretation of
                   bioenergetics studies. J Biol Chem. 2021;297:101140.  DOI  PubMed  PMC
               16.      Kushmerick MJ, Moerland TS, Wiseman RW. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP,
                   and Pi. Proc Natl Acad Sci USA. 1992;89:7521-5.  DOI  PubMed  PMC
               17.      Hafen PS, Law AS, Matias C, Miller SG, Brault JJ. Skeletal muscle contraction kinetics and AMPK responses are modulated by the
                   adenine nucleotide degrading enzyme AMPD1. J Appl Physiol. 2022;133:1055-66.  DOI  PubMed  PMC
               18.      Brault JJ, Pizzimenti NM, Dentel JN, Wiseman RW. Selective inhibition of ATPase activity during contraction alters the activation of
                   p38 MAP kinase isoforms in skeletal muscle. J Cell Biochem. 2013;114:1445-55.  DOI  PubMed  PMC
               19.      Hancock CR, Brault JJ, Terjung RL. Protecting the cellular energy state during contractions: role of AMP deaminase. J Physiol
                   Pharmacol. 2006;57 Suppl 10:17-29.  PubMed
               20.      Amorese AJ, Minchew EC, Tarpey MD, et al. Hypoxia resistance is an inherent phenotype of the mouse flexor digitorum brevis
                   skeletal muscle. Function. 2023;4:zqad012.  DOI  PubMed  PMC
               21.      Greiner JV, Glonek T. Intracellular ATP concentration and implication for cellular evolution. Biology. 2021;10:1166.  DOI  PubMed
                   PMC
   28   29   30   31   32   33   34   35   36   37   38