Page 34 - Read Online
P. 34

Page 8                    Brault et al. J Transl Genet Genom. 2025;9:1-10  https://dx.doi.org/10.20517/jtgg.2024.83

               22.      Davis PR, Miller SG, Verhoeven NA, et al. Increased AMP deaminase activity decreases ATP content and slows protein degradation
                   in cultured skeletal muscle. Metabolism. 2020;108:154257.  DOI  PubMed  PMC
               23.      Miller SG, Hafen PS, Law AS, et al. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal
                   muscle. Metabolism. 2021;123:154864.  DOI  PubMed  PMC
               24.      Hancock EJ, Krycer JR, Ang J. Metabolic buffer analysis reveals the simultaneous, independent control of ATP and adenylate energy
                   ratios. J R Soc Interface. 2021;18:20200976.  DOI  PubMed  PMC
               25.      Rauckhorst AJ, Borcherding N, Pape DJ, Kraus AS, Scerbo DA, Taylor EB. Mouse tissue harvest-induced hypoxia rapidly alters the in
                                                                  13
                   vivo metabolome, between-genotype metabolite level differences, and  C-tracing enrichments. Mol Metab. 2022;66:101596.  DOI
                   PubMed  PMC
               26.      Goossens C, Tambay V, Raymond VA, Rousseau L, Turcotte S, Bilodeau M. Impact of the delay in cryopreservation timing during
                   biobanking procedures on human liver tissue metabolomics. PLoS One. 2024;19:e0304405.  DOI  PubMed  PMC
               27.      Brault JJ, Abraham KA, Terjung RL. Phosphocreatine content of freeze-clamped muscle: influence of creatine kinase inhibition. J
                   Appl Physiol. 2003;94:1751-6.  DOI  PubMed
               28.      Hancock CR, Brault JJ, Wiseman RW, Terjung RL, Meyer RA.   31P -NMR observation of free ADP during fatiguing, repetitive
                   contractions of murine skeletal muscle lacking AK1. Am J Physiol Cell Physiol. 2005;288:C1298-304.  DOI  PubMed
               29.      Marvin JS, Kokotos AC, Kumar M, et al. iATPSnFR2: a high-dynamic-range fluorescent sensor for monitoring intracellular ATP.
                   Proc Natl Acad Sci USA. 2024;121:e2314604121.  DOI  PubMed  PMC
               30.      Stanley PE, Williams SG. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme.
                   Anal Biochem. 1969;29:381-92.  DOI  PubMed
               31.      Yang NC, Ho WM, Chen YH, Hu ML. A convenient one-step extraction of cellular ATP using boiling water for the luciferin-
                   luciferase assay of ATP. Anal Biochem. 2002;306:323-7.  DOI  PubMed
               32.      Tullson PC, Whitlock DM, Terjung RL. Adenine nucleotide degradation in slow-twitch red muscle. Am J Physiol. 1990;258:C258-65.
                   DOI  PubMed
               33.      Law AS, Hafen PS, Brault JJ. Liquid chromatography method for simultaneous quantification of ATP and its degradation products
                   compatible with both UV-Vis and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1206:123351.  DOI
                   PubMed  PMC
               34.      Schlame M, Greenberg ML. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol
                   Lipids. 2017;1862:3-7.  DOI  PubMed  PMC
               35.      Duncan AL. Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem Soc Trans. 2020;48:993-
                   1004.  DOI  PubMed  PMC
               36.      Gonzalez-Franquesa A, Stocks B, Chubanava S, et al. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome
                   plasticity. Cell Rep. 2021;35:109180.  DOI
               37.      Zhang M, Mileykovskaya E, Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in
                   the inner mitochondrial membrane. J Biol Chem. 2002;277:43553-6.  DOI  PubMed
               38.      Zhang M, Mileykovskaya E, Dowhan W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in
                   intact yeast mitochondria. J Biol Chem. 2005;280:29403-8.  DOI  PubMed  PMC
               39.      Claypool SM, Boontheung P, McCaffery JM, Loo JA, Koehler CM. The cardiolipin transacylase, tafazzin, associates with two distinct
                   respiratory components providing insight into Barth syndrome. Mol Biol Cell. 2008;19:5143-55.  DOI  PubMed  PMC
               40.      Hoch FL. Cardiolipins and biomembrane function. Biochim Biophys Acta. 1992;1113:71-133.  DOI  PubMed
               41.      Acehan D, Vaz F, Houtkooper RH, et al. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol
                   Chem. 2011;286:899-908.  DOI  PubMed  PMC
               42.      Snider PL, Sierra Potchanant EA, Sun Z, et al. A Barth syndrome patient-derived D75H point mutation in TAFAZZIN drives
                   progressive cardiomyopathy in mice. Int J Mol Sci. 2024;25:8201.  DOI  PubMed  PMC
               43.      Soustek MS, Falk DJ, Mah CS, et al. Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin
                   deficiency. Hum Gene Ther. 2011;22:865-71.  DOI  PubMed  PMC
               44.      Suzuki-Hatano S, Saha M, Rizzo SA, et al. AAV-mediated TAZ gene replacement restores mitochondrial and cardioskeletal function
                   in Barth syndrome. Hum Gene Ther. 2019;30:139-54.  DOI  PubMed  PMC
               45.      Prola A, Blondelle J, Vandestienne A, et al. Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle.
                   Sci Adv. 2021;7:eabd6322.  DOI  PubMed  PMC
               46.      Russo S, De Rasmo D, Rossi R, Signorile A, Lobasso S. SS-31 treatment ameliorates cardiac mitochondrial morphology and defective
                   mitophagy in a murine model of Barth syndrome. Sci Rep. 2024;14:13655.  DOI  PubMed  PMC
               47.      Powers C, Huang Y, Strauss A, Khuchua Z. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-
                   knockdown mice. Front Physiol. 2013;4:74.  DOI  PubMed  PMC
               48.      Johnson JM, Ferrara PJ, Verkerke ARP, et al. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal
                   myopathy in Barth syndrome. J Mol Cell Cardiol. 2018;121:94-102.  DOI  PubMed  PMC
               49.      Lou W, Reynolds CA, Li Y, et al. Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: a myoblast model of
                   Barth syndrome and cardiolipin deficiency. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:857-65.  DOI  PubMed  PMC
               50.      Petit PX, Ardilla-Osorio H, Penalvia L, Rainey NE. Tafazzin mutation affecting cardiolipin leads to increased mitochondrial
                   superoxide anions and mitophagy inhibition in Barth syndrome. Cells. 2020;9:2333.  DOI  PubMed  PMC
   29   30   31   32   33   34   35   36   37   38   39