Page 34 - Read Online
P. 34
Page 8 Brault et al. J Transl Genet Genom. 2025;9:1-10 https://dx.doi.org/10.20517/jtgg.2024.83
22. Davis PR, Miller SG, Verhoeven NA, et al. Increased AMP deaminase activity decreases ATP content and slows protein degradation
in cultured skeletal muscle. Metabolism. 2020;108:154257. DOI PubMed PMC
23. Miller SG, Hafen PS, Law AS, et al. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal
muscle. Metabolism. 2021;123:154864. DOI PubMed PMC
24. Hancock EJ, Krycer JR, Ang J. Metabolic buffer analysis reveals the simultaneous, independent control of ATP and adenylate energy
ratios. J R Soc Interface. 2021;18:20200976. DOI PubMed PMC
25. Rauckhorst AJ, Borcherding N, Pape DJ, Kraus AS, Scerbo DA, Taylor EB. Mouse tissue harvest-induced hypoxia rapidly alters the in
13
vivo metabolome, between-genotype metabolite level differences, and C-tracing enrichments. Mol Metab. 2022;66:101596. DOI
PubMed PMC
26. Goossens C, Tambay V, Raymond VA, Rousseau L, Turcotte S, Bilodeau M. Impact of the delay in cryopreservation timing during
biobanking procedures on human liver tissue metabolomics. PLoS One. 2024;19:e0304405. DOI PubMed PMC
27. Brault JJ, Abraham KA, Terjung RL. Phosphocreatine content of freeze-clamped muscle: influence of creatine kinase inhibition. J
Appl Physiol. 2003;94:1751-6. DOI PubMed
28. Hancock CR, Brault JJ, Wiseman RW, Terjung RL, Meyer RA. 31P -NMR observation of free ADP during fatiguing, repetitive
contractions of murine skeletal muscle lacking AK1. Am J Physiol Cell Physiol. 2005;288:C1298-304. DOI PubMed
29. Marvin JS, Kokotos AC, Kumar M, et al. iATPSnFR2: a high-dynamic-range fluorescent sensor for monitoring intracellular ATP.
Proc Natl Acad Sci USA. 2024;121:e2314604121. DOI PubMed PMC
30. Stanley PE, Williams SG. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme.
Anal Biochem. 1969;29:381-92. DOI PubMed
31. Yang NC, Ho WM, Chen YH, Hu ML. A convenient one-step extraction of cellular ATP using boiling water for the luciferin-
luciferase assay of ATP. Anal Biochem. 2002;306:323-7. DOI PubMed
32. Tullson PC, Whitlock DM, Terjung RL. Adenine nucleotide degradation in slow-twitch red muscle. Am J Physiol. 1990;258:C258-65.
DOI PubMed
33. Law AS, Hafen PS, Brault JJ. Liquid chromatography method for simultaneous quantification of ATP and its degradation products
compatible with both UV-Vis and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1206:123351. DOI
PubMed PMC
34. Schlame M, Greenberg ML. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol
Lipids. 2017;1862:3-7. DOI PubMed PMC
35. Duncan AL. Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem Soc Trans. 2020;48:993-
1004. DOI PubMed PMC
36. Gonzalez-Franquesa A, Stocks B, Chubanava S, et al. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome
plasticity. Cell Rep. 2021;35:109180. DOI
37. Zhang M, Mileykovskaya E, Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in
the inner mitochondrial membrane. J Biol Chem. 2002;277:43553-6. DOI PubMed
38. Zhang M, Mileykovskaya E, Dowhan W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in
intact yeast mitochondria. J Biol Chem. 2005;280:29403-8. DOI PubMed PMC
39. Claypool SM, Boontheung P, McCaffery JM, Loo JA, Koehler CM. The cardiolipin transacylase, tafazzin, associates with two distinct
respiratory components providing insight into Barth syndrome. Mol Biol Cell. 2008;19:5143-55. DOI PubMed PMC
40. Hoch FL. Cardiolipins and biomembrane function. Biochim Biophys Acta. 1992;1113:71-133. DOI PubMed
41. Acehan D, Vaz F, Houtkooper RH, et al. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol
Chem. 2011;286:899-908. DOI PubMed PMC
42. Snider PL, Sierra Potchanant EA, Sun Z, et al. A Barth syndrome patient-derived D75H point mutation in TAFAZZIN drives
progressive cardiomyopathy in mice. Int J Mol Sci. 2024;25:8201. DOI PubMed PMC
43. Soustek MS, Falk DJ, Mah CS, et al. Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin
deficiency. Hum Gene Ther. 2011;22:865-71. DOI PubMed PMC
44. Suzuki-Hatano S, Saha M, Rizzo SA, et al. AAV-mediated TAZ gene replacement restores mitochondrial and cardioskeletal function
in Barth syndrome. Hum Gene Ther. 2019;30:139-54. DOI PubMed PMC
45. Prola A, Blondelle J, Vandestienne A, et al. Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle.
Sci Adv. 2021;7:eabd6322. DOI PubMed PMC
46. Russo S, De Rasmo D, Rossi R, Signorile A, Lobasso S. SS-31 treatment ameliorates cardiac mitochondrial morphology and defective
mitophagy in a murine model of Barth syndrome. Sci Rep. 2024;14:13655. DOI PubMed PMC
47. Powers C, Huang Y, Strauss A, Khuchua Z. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-
knockdown mice. Front Physiol. 2013;4:74. DOI PubMed PMC
48. Johnson JM, Ferrara PJ, Verkerke ARP, et al. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal
myopathy in Barth syndrome. J Mol Cell Cardiol. 2018;121:94-102. DOI PubMed PMC
49. Lou W, Reynolds CA, Li Y, et al. Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: a myoblast model of
Barth syndrome and cardiolipin deficiency. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:857-65. DOI PubMed PMC
50. Petit PX, Ardilla-Osorio H, Penalvia L, Rainey NE. Tafazzin mutation affecting cardiolipin leads to increased mitochondrial
superoxide anions and mitophagy inhibition in Barth syndrome. Cells. 2020;9:2333. DOI PubMed PMC