Page 71 - Read Online
P. 71

Bibi et al. J Transl Genet Genom 2024;8:119-161  https://dx.doi.org/10.20517/jtgg.2023.50  Page 161

               297.      Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov 2017;16:387-99.  DOI
                    PubMed
               298.      Planul A, Dalkara D. Vectors and gene delivery to the retina. Annu Rev Vis Sci 2017;3:121-40.  DOI
               299.      Hill AB, Chen M, Chen CK, Pfeifer BA, Jones CH. Overcoming gene-delivery hurdles: physiological considerations for nonviral
                    vectors. Trends Biotechnol 2016;34:91-105.  DOI  PubMed  PMC
               300.      Zhang Y, Satterlee A, Huang L. In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol Ther 2012;20:1298-304.  DOI
                    PubMed  PMC
               301.      Butt MH, Zaman M, Ahmad A, et al. Appraisal for the potential of viral and nonviral vectors in gene therapy: a review. Genes
                    2022;13:1370.  DOI  PubMed  PMC
               302.      Dey D, Evans GR. Suicide gene therapy by herpes simplex virus-1 thymidine kinase (HSV-TK). Targets Gene Ther 2011:65.  DOI
                    303.      Harrison GS, Glode LM. Current challenges of gene therapy for prostate cancer. Oncology 1997;11:845-55.   PubMed
               304.      Han C, Deng Y, Xu W, et al. The roles of tumor-associated macrophages in prostate cancer. J Oncol 2022;2022:8580043.  DOI
                    PubMed  PMC
               305.      Msaouel P, Iankov ID, Allen C, et al. Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate
                    2009;69:82-91.  DOI  PubMed  PMC
               306.      Li J, Røise JJ, He M, Das R, Murthy N. Non-viral strategies for delivering genome editing enzymes. Adv Drug Deliv Rev
                    2021;168:99-117.  DOI  PubMed
               307.      Gregg JR, Thompson TC. Considering the potential for gene-based therapy in prostate cancer. Nat Rev Urol 2021;18:170-84.  DOI
                    PubMed
               308.      van Ophoven A, Ng CP, Patel B, Bonavida B, Belldegrun A. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
                    for treatment of prostate cancer: first results and review of the literature. Prostate Cancer Prostatic Dis 1999;2:227-33.  DOI  PubMed
               309.      Darvish L, Bahreyni-Toossi MT, Aghaee-Bakhtiari SH, et al. Inducing apoptosis by using microRNA in radio-resistant prostate
                    cancer: an in-silico study with an in-vitro validation. Mol Biol Rep 2023;50:6063-74.  DOI
               310.      Teh BS, Ishiyama H, Mai WY, Thompson TC, Butler EB. Long-term outcome of a phase II trial using immunomodulatory in situ
                    gene therapy in combination with intensity-modulated radiotherapy with or without hormonal therapy in the treatment of prostate
                    cancer. Int J Radiat Oncol 2015;4:377-86.  DOI
               311.      Boettcher AN, Usman A, Morgans A, VanderWeele DJ, Sosman J, Wu JD. Past, current, and future of immunotherapies for prostate
                    cancer. Front Oncol 2019;9:884.  DOI  PubMed  PMC
               312.      LeVee A, Lin CY, Posadas E, et al. Clinical utility of olaparib in the treatment of metastatic castration-resistant prostate cancer: a
                    review of current evidence and patient selection. Onco Targets Ther 2021;14:4819-32.  DOI  PubMed  PMC
               313.      Powers E, Karachaliou GS, Kao C, et al. Novel therapies are changing treatment paradigms in metastatic prostate cancer. J Hematol
                    Oncol 2020;13:144.  DOI  PubMed  PMC
               314.      Gdor Y, Timme TL, Kadmon D, Miles BJ, Thompson TC. Strategies for prostate cancer gene therapy. Am J Cancer 2004;3:79-95.
                    DOI
               315.      Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci
                    2022;10:1166-92.  DOI  PubMed
               316.      Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-viral vectors for delivery of nucleic acid therapies for cancer.
                    BioTech 2022;11:6.  DOI  PubMed  PMC
               317.      McCrudden CM, McBride JW, McCaffrey J, et al. Gene therapy with RALA/iNOS composite nanoparticles significantly enhances
                    survival in a model of metastatic prostate cancer. Cancer Nanotechnol 2018;9:5.  DOI  PubMed  PMC
               318.      Liu C, Hasegawa K, Russell SJ, Sadelain M, Peng KW. Prostate-specific membrane antigen retargeted measles virotherapy for the
                    treatment of prostate cancer. Prostate 2009;69:1128-41.  DOI  PubMed  PMC
               319.      Son HA, Zhang L, Cuong BK, et al. Combination of vaccine-strain measles and mumps viruses enhances oncolytic activity against
                    human solid malignancies. Cancer Invest 2018;36:106-17.  DOI
               320.      Durso RJ, Andjelic S, Gardner JP, et al. A novel alphavirus vaccine encoding prostate-specific membrane antigen elicits potent
                    cellular and humoral immune responses. Clin Cancer Res 2007;13:3999-4008.  DOI
               321.      Mansfield DC, Kyula JN, Rosenfelder N, et al. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene
                    therapy in prostate cancer. Gene Ther 2016;23:357-68.  DOI  PubMed  PMC
               322.      Slovin SF, Kehoe M, Durso R, et al. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific
                    membrane antigen (PSMA) in subjects with prostate cancer. Vaccine 2013;31:943-9.  DOI
               323.      Vajda A, Marignol L, Foley R, Lynch TH, Lawler M, Hollywood D. Clinical potential of gene-directed enzyme prodrug therapy to
                    improve radiation therapy in prostate cancer patients. Cancer Treat Rev 2011;37:643-54.  DOI  PubMed
   66   67   68   69   70   71   72   73   74   75   76