Page 66 - Read Online
P. 66

Page 156                  Bibi et al. J Transl Genet Genom 2024;8:119-161  https://dx.doi.org/10.20517/jtgg.2023.50

               146.      Maeda H, Nagata S, Wolfgang CD, Bratthauer GL, Bera TK, Pastan I. The T cell receptor gamma chain alternate reading frame
                    protein (TARP), a prostate-specific protein localized in mitochondria. J Biol Chem 2004;279:24561-8.  DOI
               147.      Carlsson B, Tötterman TH, Essand M. Generation of cytotoxic T lymphocytes specific for the prostate and breast tissue antigen
                    TARP. Prostate 2004;61:161-70.  DOI  PubMed
               148.      Oh S, Terabe M, Pendleton CD, et al. Human CTLs to wild-type and enhanced epitopes of a novel prostate and breast tumor-
                    associated protein, TARP, lyse human breast cancer cells. Cancer Res 2004;64:2610-8.  DOI
               149.      Kobayashi H, Nagato T, Oikawa K, et al. Recognition of prostate and breast tumor cells by helper T lymphocytes specific for a
                    prostate and breast tumor-associated antigen, TARP. Clin Cancer Res 2005;11:3869-78.  DOI  PubMed  PMC
               150.      Epel M, Carmi I, Soueid-Baumgarten S, et al. Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell
                    receptor-like human recombinant antibodies. Eur J Immunol 2008;38:1706-20.  DOI  PubMed  PMC
               151.      Hillerdal V, Nilsson B, Carlsson B, Eriksson F, Essand M. T cells engineered with a T cell receptor against the prostate antigen
                                         +
                    TARP specifically kill HLA-A2  prostate and breast cancer cells. Proc Natl Acad Sci USA 2012;109:15877-81.  DOI  PubMed  PMC
               152.      Hillerdal V, Boura VF, Björkelund H, Andersson K, Essand M. Avidity characterization of genetically engineered T-cells with novel
                    and established approaches. BMC Immunol 2016;17:23.  DOI  PubMed  PMC
               153.      Bonte S, De Munter S, Goetgeluk G, et al. T-cells with a single tumor antigen-specific T-cell receptor can be generated in vitro from
                    clinically relevant stem cell sources. Oncoimmunology 2020;9:1727078.  DOI  PubMed  PMC
               154.      Vanhooren J, Derpoorter C, Depreter B, et al. TARP as antigen in cancer immunotherapy. Cancer Immunol Immunother
                    2021;70:3061-8.  DOI  PubMed  PMC
               155.      Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other
                    malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 2001;61:3760-9.
                    PubMed
               156.      Ochoa SV, Casas Z, Albarracín SL, Sutachan JJ, Torres YP. Therapeutic potential of TRPM8 channels in cancer treatment. Front
                    Pharmacol 2023;14:1098448.  DOI  PubMed  PMC
               157.      Zhang L, Barritt GJ. TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocr
                    Relat Cancer 2006;13:27-38.  DOI
               158.      Bidaux G, Roudbaraki M, Merle C, et al. Evidence for specific TRPM8 expression in human prostate secretory epithelial cells:
                    functional androgen receptor requirement. Endocr Relat Cancer 2005;12:367-82.  DOI
               159.      Valero M, Morenilla-Palao C, Belmonte C, Viana F. Pharmacological and functional properties of TRPM8 channels in prostate tumor
                    cells. Pflugers Arch 2011;461:99-114.  DOI  PubMed
               160.      Kiessling A, Füssel S, Schmitz M, et al. Identification of an HLA-A*0201-restricted T-cell epitope derived from the prostate cancer-
                    associated protein trp-p8. Prostate 2003;56:270-9.  DOI
               161.      Xu M, Evans L, Bizzaro CL, et al. STEAP1-4 (six-transmembrane epithelial antigen of the prostate 1-4) and their clinical
                    implications for prostate cancer. Cancers 2022;14:4034.  DOI  PubMed  PMC
               162.      Jiao Z, Huang L, Sun J, et al. Six-transmembrane epithelial antigen of the prostate 1 expression promotes ovarian cancer metastasis
                    by aiding progression of epithelial-to-mesenchymal transition. Histochem Cell Biol 2020;154:215-30.  DOI
               163.      Santos C, Socorro S, Maia CJ. STEAP1 (six transmembrane epithelial antigene of the prostate 1). 2009. Available from: https://
                    ubibliorum.ubi.pt/bitstream/10400.6/7635/1/STEAP1%20%28Six%20Transmembrane%20Epithelial%20Antigene.pdf  [Last  accessed
                    on 12 Apr 2024].
               164.      Rodeberg DA, Nuss RA, Elsawa SF, Celis E. Recognition of six-transmembrane epithelial antigen of the prostate-expressing tumor
                    cells by peptide antigen-induced cytotoxic T lymphocytes. Clin Cancer Res 2005;11:4545-52.  DOI  PubMed  PMC
                                                                                        +
               165.      Alves PM, Faure O, Graff-Dubois S, et al. STEAP, a prostate tumor antigen, is a target of human CD8  T cells. Cancer Immunol
                    Immunother 2006;55:1515-23.  DOI
               166.      Kobayashi H, Nagato T, Sato K, et al. Recognition of prostate and melanoma tumor cells by six-transmembrane epithelial antigen of
                    prostate-specific helper T lymphocytes in a human leukocyte antigen class II-restricted manner. Cancer Res 2007;67:5498-504.  DOI
               167.      Azumi M, Kobayashi H, Aoki N, et al. Six-transmembrane epithelial antigen of the prostate as an immunotherapeutic target for renal
                    cell and bladder cancer. J Urol 2010;183:2036-44.  DOI
               168.      Hayashi S, Kumai T, Matsuda Y, et al. Six-transmembrane epithelial antigen of the prostate and enhancer of zeste homolog 2 as
                    immunotherapeutic targets for lung cancer. J Transl Med 2011;9:191.  DOI  PubMed  PMC
               169.      de la Luz Garcia-Hernandez M, Gray A, Hubby B, Kast WM. In vivo effects of vaccination with six-transmembrane epithelial
                    antigen of the prostate: a candidate antigen for treating prostate cancer. Cancer Res 2007;67:1344-51.  DOI  PubMed
               170.      Kim S, Lee JB, Lee GK, Chang J. Vaccination with recombinant adenoviruses and dendritic cells expressing prostate-specific
                    antigens is effective in eliciting CTL and suppresses tumor growth in the experimental prostate cancer. Prostate 2009;69:938-48.
                    DOI
               171.      Challita-Eid PM, Morrison K, Etessami S, et al. Monoclonal antibodies to six-transmembrane epithelial antigen of the prostate-1
                    inhibit intercellular communication in vitro and growth of human tumor xenografts in vivo. Cancer Res 2007;67:5798-805.  DOI
               172.      Gati A, Lajmi N, Derouiche A, Marrakchi R, Chebil M, Benammar-Elgaaied A. NY-ESO-1 expression and immunogenicity in
                    prostate cancer patients. Tunis Med 2011;89:779-83.  PubMed
               173.      Thomas R, Al-Khadairi G, Roelands J, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol
                    2018;9:947.  DOI  PubMed  PMC
               174.      Nakada T, Noguchi Y, Satoh S, et al. NY-ESO-1 mRNA expression and immunogenicity in advanced prostate cancer. Cancer Immun
   61   62   63   64   65   66   67   68   69   70   71