Page 70 - Read Online
P. 70
Page 160 Bibi et al. J Transl Genet Genom 2024;8:119-161 https://dx.doi.org/10.20517/jtgg.2023.50
264. King A. Could immunotherapy finally break through in prostate cancer? Nature 2022;609:S42-4. DOI PubMed
265. Lorenzo G, Buonerba C, Kantoff PW. Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol 2011;8:551-61. DOI
PubMed
266. Galsky MD. Resistance to prostate-cancer treatment is driven by immune cells. Nature 2018;559:338-9. DOI PubMed
267. Belete TM. The current status of gene therapy for the treatment of cancer. Biologics 2021;15:67-77. DOI PubMed PMC
268. Edwards BK, Noone AM, Mariotto AB, et al. Annual report to the nation on the status of cancer, 1975-2010, featuring prevalence of
comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 2014;120:1290-314. DOI
269. National Cancer Institute. NCI comorbidity index overview. Available from: https://healthcaredelivery.cancer.gov/seermedicare/
considerations/comorbidity.html [Last accessed on 28 Mar 2024].
270. Klabunde CN, Potosky AL, Legler JM, Warren JL. Development of a comorbidity index using physician claims data. J Clin
Epidemiol 2000;53:1258-67. DOI
271. Asmar R, Beebe-Dimmer JL, Korgavkar K, Keele GR, Cooney KA. Hypertension, obesity and prostate cancer biochemical
recurrence after radical prostatectomy. Prostate Cancer Prostatic Dis 2013;16:62-6. DOI PubMed PMC
272. Post JM, Beebe-Dimmer JL, Morgenstern H, et al. The metabolic syndrome and biochemical recurrence following radical
prostatectomy. Prostate Cancer 2011;2011:245642. DOI PubMed PMC
273. Jefferson M, Drake RR, Lilly M, Savage SJ, Tucker Price S, Hughes Halbert C. Co-morbidities in a retrospective cohort of prostate
cancer patients. Ethn Dis 2020;30:185-92. DOI PubMed PMC
274. Boussios S, Rassy E, Samartzis E, et al. Melanoma of unknown primary: new perspectives for an old story. Crit Rev Oncol Hematol
2021;158:103208. DOI
275. Sharma AR, Kundu SK, Nam JS, et al. Next generation delivery system for proteins and genes of therapeutic purpose: why and how?
Biomed Res Int 2014;2014:327950. DOI PubMed PMC
276. Templeton NS, editor. . editor. Gene and cell therapy: therapeutic mechanisms and strategies. CRC Press; 2008.
277. Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 2018;8:87-
104. DOI PubMed PMC
278. Merten OW, Charrier S, Laroudie N, et al. Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex
vivo gene therapy application. Hum Gene Ther 2011;22:343-56. DOI
279. Huang C, Li G, Wu J, Liang J, Wang X. Identification of pathogenic variants in cancer genes using base editing screens with editing
efficiency correction. Genome Biol 2021;22:80. DOI PubMed PMC
280. Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy
of cancer. Mol Cancer 2021;20:126. DOI PubMed PMC
281. Palpant NJ, Dudzinski D. Zinc finger nucleases: looking toward translation. Gene Ther 2013;20:121-7. DOI PubMed
282. Cassandri M, Smirnov A, Novelli F, et al. Zinc-finger proteins in health and disease. Cell Death Discov 2017;3:17071. DOI PubMed
PMC
283. Shojaei Baghini S, Gardanova ZR, Abadi SAH, et al. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool.
Cell Mol Biol Lett 2022;27:35. DOI PubMed PMC
284. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: backward and forward. Cell
2018;172:1239-59. DOI PubMed
285. Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications.
Biomaterials 2020;234:119711. DOI PubMed PMC
286. Sun N, Zhao H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing.
Biotechnol Bioeng 2013;110:1811-21. DOI
287. Nakano C, Kitabatake Y, Takeyari S, et al. Genetic correction of induced pluripotent stem cells mediated by transcription activator-
like effector nucleases targeting ALPL recovers enzyme activity and calcification in vitro. Mol Genet Metab 2019;127:158-65. DOI
288. Lundstrom K. Viral vectors in gene therapy: where do we stand in 2023? Viruses 2023;15:698. DOI PubMed PMC
289. Bin Umair M, Akusa FN, Kashif H, et al. Viruses as tools in gene therapy, vaccine development, and cancer treatment. Arch Virol
2022;167:1387-404. DOI PubMed PMC
290. Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomater Res 2019;23:8. DOI PubMed PMC
291. Sung YK, Kim SW. The practical application of gene vectors in cancer therapy. Integrat Cancer Sci Therap 2018;5:1-5. DOI
292. Panday R, Abdalla AM, Neupane M, Khadka S, Kricha A, Yang G. Advances in magnetic nanoparticle-driven delivery of gene
therapies towards prostate cancer. J Nanomater 2021;2021:6050795. DOI
293. Altwaijry N, Somani S, Dufès C. Targeted nonviral gene therapy in prostate cancer. Int J Nanomed 2018;13:5753-67. DOI PubMed
PMC
294. Rehman K, Iqbal Z, Zhiqin D, et al. Analysis of genetic biomarkers, polymorphisms in ADME-related genes and their impact on
pharmacotherapy for prostate cancer. Cancer Cell Int 2023;23:247. DOI PubMed PMC
295. Ahmed KA, Davis BJ, Wilson TM, Wiseman GA, Federspiel MJ, Morris JC. Progress in gene therapy for prostate cancer. Front
Oncol 2012;2:172. DOI PubMed PMC
296. Naseer F, Ahmad T, Kousar K, Anjum S. Advanced therapeutic options for treatment of metastatic castration resistant prostatic
adenocarcinoma. Front Pharmacol 2021;12:728054. DOI PubMed PMC