Page 27 - Read Online
P. 27

Bhasin et al. J Transl Genet Genom 2024;8:55-76  https://dx.doi.org/10.20517/jtgg.2023.46   Page 75

                    small cell lung cancer. Clin Cancer Res 2020;26:5258-68.  DOI
               120.      Chou J, Egusa EA, Wang S, et al. Immunotherapeutic targeting and PET imaging of DLL3 in small-cell neuroendocrine prostate
                    cancer. Cancer Res 2023;83:301-15.  DOI  PubMed  PMC
               121.      Lee JK, Bangayan NJ, Chai T, et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of
                    advanced prostate cancer. Proc Natl Acad Sci USA 2018;115:E4473-82.  DOI  PubMed  PMC
               122.      Cha S, Yazaki P, Brown C, Shively J. Abstract PO083: treatment of CEA-positive solid tumors with anti-CEA chimeric antigen
                    receptor T-cells in CEA transgenic mice. Cancer Immunol Res 2021;9:PO083.  DOI
               123.      Picarda E, Ohaegbulam KC, Zang X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin Cancer
                    Res 2016;22:3425-31.  DOI  PubMed  PMC
               124.      Li D, Xiang S, Shen J, et al. Comprehensive understanding of B7 family in gastric cancer: expression profile, association with
                    clinicopathological parameters and downstream targets. Int J Biol Sci 2020;16:568-82.  DOI  PubMed  PMC
               125.      Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci 2020;16:1767-73.  DOI
                    PubMed  PMC
               126.      Lanka SM, Zorko NA, Antonarakis ES, Barata PC. Metastatic castration-resistant prostate cancer, immune checkpoint inhibitors, and
                    beyond. Curr Oncol 2023;30:4246-56.  DOI  PubMed  PMC
               127.      Kontos F, Michelakos T, Kurokawa T, et al. B7-H3: an attractive target for antibody-based immunotherapy. Clin Cancer Res
                    2021;27:1227-35.  DOI  PubMed  PMC
               128.      Guo C, Figueiredo I, Gurel B, et al. B7-H3 as a therapeutic target in advanced prostate cancer. Eur Urol 2023;83:224-38.  DOI
               129.      Shi X, Day A, Bergom HE, et al. Integrative molecular analyses define correlates of high B7-H3 expression in metastatic castrate-
                    resistant prostate cancer. NPJ Precis Oncol 2022;6:80.  DOI  PubMed  PMC
               130.      Li S, Zhang M, Wang M, et al. B7-H3 specific CAR-T cells exhibit potent activity against prostate cancer. Cell Death Discov
                    2023;9:147.  DOI  PubMed  PMC
               131.      Benzon B, Zhao SG, Haffner MC, et al. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in
                    prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis 2017;20:28-35.  DOI  PubMed  PMC
               132.      Shi W, Wang Y, Zhao Y, et al. Immune checkpoint B7-H3 is a therapeutic vulnerability in prostate cancer harboring PTEN and TP53
                    deficiencies. Sci Transl Med 2023;15:eadf6724.  DOI
               133.      Mendes AA, Lu J, Kaur HB, et al. Association of B7-H3 expression with racial ancestry, immune cell density, and androgen receptor
                    activation in prostate cancer. Cancer 2022;128:2269-80.  DOI
               134.      Shenderov E, De Marzo AM, Lotan TL, et al. Neoadjuvant enoblituzumab in localized prostate cancer: a single arm, phase 2 trial.
                    Nat Med 2023;29:888-97.  DOI
               135.      Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 2015;21:687-92.  DOI
                    PubMed  PMC
               136.      Ferrone C, Dranoff G. Dual roles for immunity in gastrointestinal cancers. J Clin Oncol 2010;28:4045-51.  DOI  PubMed  PMC
               137.      Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science
                    2011;331:1565-70.  DOI  PubMed
               138.      Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene
                    2008;27:5869-85.  DOI  PubMed  PMC
               139.      Le Mercier I, Chen W, Lines JL, et al. VISTA regulates the development of protective antitumor immunity.  Cancer Res
                    2014;74:1933-44.  DOI  PubMed  PMC
               140.      Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T regs  in the melanoma tumor microenvironment is driven
                         +
                    by CD8  T cells. Sci Transl Med 2013;5:200ra116.  DOI  PubMed  PMC
               141.      Gardner RA, Ceppi F, Rivers J, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of
                    antileukemic efficacy. Blood 2019;134:2149-58.  DOI  PubMed  PMC
               142.      Liu S, Deng B, Yin Z, et al. Corticosteroids do not influence the efficacy and kinetics of CAR-T cells for B-cell acute lymphoblastic
                    leukemia. Blood Cancer J 2020;10:15.  DOI  PubMed  PMC
               143.      Viardot A, Locatelli F, Stieglmaier J, Zaman F, Jabbour E. Concepts in immuno-oncology: tackling B cell malignancies with CD19-
                    directed bispecific T cell engager therapies. Ann Hematol 2020;99:2215-29.  DOI  PubMed  PMC
               144.      Li H, Er Saw P, Song E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol
                    Immunol 2020;17:451-61.  DOI  PubMed  PMC
               145.      Perera MPJ, Thomas PB, Risbridger GP, et al. Chimeric antigen receptor T-cell therapy in metastatic castrate-resistant prostate
                    cancer. Cancers 2022;14:503.  DOI  PubMed  PMC
               146.      Braig F, Brandt A, Goebeler M, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by
                    disrupted CD19 membrane trafficking. Blood 2017;129:100-4.  DOI
               147.      Kamat NV, Yu EY, Lee JK. BiTE-ing into prostate cancer with bispecific T-cell engagers. Clin Cancer Res 2021;27:2675-7.  DOI
                    PubMed  PMC
               148.      Correnti CE, Laszlo GS, de van der Schueren WJ, et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific
                    antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia 2018;32:1239-43.  DOI
                    PubMed  PMC
               149.      Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural
   22   23   24   25   26   27   28   29   30   31   32