Page 26 - Read Online
P. 26

Page 74                  Bhasin et al. J Transl Genet Genom 2024;8:55-76  https://dx.doi.org/10.20517/jtgg.2023.46

                    2020;31:S507.  DOI
               92.       Subudhi SK, Siddiqui BA, Maly JJ, et al. Safety and efficacy of AMG 160, a half-life extended BiTE immune therapy targeting
                    prostate-specific membrane antigen (PSMA), and other therapies for metastatic castration-resistant prostate cancer (mCRPC). J Clin
                    Oncol 2021;39:TPS5088.  DOI
               93.       Hernandez-Hoyos G, Sewell T, Bader R, et al. MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of
                    metastatic castration-resistant prostate cancer. Mol Cancer Ther 2016;15:2155-65.  DOI
               94.       Lim EA, Schweizer MT, Chi KN, et al. Phase 1 study of safety and preliminary clinical activity of JNJ-63898081, a PSMA and CD3
                    bispecific antibody, for metastatic castration-resistant prostate cancer. Clin Genitourin Cancer 2023;21:366-75.  DOI  PubMed  PMC
               95.       De Bono  JSD,  Fong  L,  Beer  TM,  et  al.  Results  of  an  ongoing  phase  1/2a  dose  escalation  study  of  HPN424,  a  tri-specific
                    half-life extended  PSMA-targeting  T-cell  engager,  in  patients  with  metastatic  castration-resistant  prostate  cancer  (mCRPC).  J
                    Clin Oncol 2021;39:5013.  DOI
               96.       Heitmann JS, Walz JS, Pflügler M, et al. Abstract CT141: CC-1, a bispecific PSMAxCD3 antibody for treatment of prostate
                    carcinoma: results of the ongoing phase I dose escalation trial. Cancer Res 2022;82:CT141.  DOI
               97.       Reiter RE, Gu Z, Watabe T, et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad
                    Sci USA 1998;95:1735-40.  DOI  PubMed  PMC
               98.       Raff AB, Gray A, Kast WM. Prostate stem cell antigen: a prospective therapeutic and diagnostic target. Cancer Lett 2009;277:126-
                    32.  DOI  PubMed  PMC
               99.       Saeki N, Gu J, Yoshida T, Wu X. Prostate stem cell antigen: a Jekyll and Hyde molecule? Clin Cancer Res 2010;16:3533-8.  DOI
                    PubMed  PMC
               100.      Gu Z, Thomas G, Yamashiro J, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage
                    and bone metastasis in prostate cancer. Oncogene 2000;19:1288-96.  DOI
               101.      Xu M, Evans L, Bizzaro CL, et al. STEAP1-4 (six-transmembrane epithelial antigen of the prostate 1-4) and their clinical
                    implications for prostate cancer. Cancers 2022;14:4034.  DOI  PubMed  PMC
               102.      Ohgami RS, Campagna DR, McDonald A, Fleming MD. The steap proteins are metalloreductases. Blood 2006;108:1388-94.  DOI
                    PubMed  PMC
               103.      Knutson MD. Steap proteins: implications for iron and copper metabolism. Nutr Rev 2007;65:335-40.  DOI  PubMed
               104.      Gomes IM, Rocha SM, Gaspar C, et al. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer
                    cells counteracting the effect of androgens. Med Oncol 2018;35:40.  DOI
               105.      Yamamoto T, Tamura Y, Kobayashi J, et al. Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor
                    growth via intercellular communication. Exp Cell Res 2013;319:2617-26.  DOI
               106.      Rodeberg DA, Nuss RA, Elsawa SF, Celis E. Recognition of six-transmembrane epithelial antigen of the prostate-expressing tumor
                    cells by peptide antigen-induced cytotoxic T lymphocytes. Clin Cancer Res 2005;11:4545-52.  DOI  PubMed  PMC
               107.      Lin TY, Park JA, Long A, Guo HF, Cheung NV. Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer
                    immunotherapy. J Immunother Cancer 2021;9:e003114.  DOI  PubMed  PMC
               108.      Bhatia V, Kamat NV, Pariva TE, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-
                    localized IL-12 immunotherapy. Nat Commun 2023;14:2041.  DOI
               109.      Jin Y, Lorvik KB, Jin Y, et al. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer.
                    Mol Ther Oncolytics 2022;26:189-206.  DOI  PubMed  PMC
                                                                          ®
               110.      Li C, Fort M, Liang L, et al. 718 AMG 509, a STEAP1 × CD3 bispecific XmAb  2+1 immune therapy, exhibits avidity-driven
                    binding and preferential killing of high STEAP1-expressing prostate and Ewing sarcoma cancer cells. J Immunother Cancer
                    2020;8:A760.  DOI
               111.      Danila DC, Waterhouse DM, Appleman LJ, et al. A phase 1 study of AMG 509 in patients (pts) with metastatic castration-resistant
                    prostate cancer (mCRPC). J Clin Oncol 2022;40:TPS5101.  DOI
               112.      Kelly WK, Danila DC, Lin CC, et al. Xaluritamig, a STEAP1 × CD3 XmAb 2+1 immune therapy for metastatic castration-resistant
                    prostate cancer: results from dose exploration in a first-in-human study. Cancer Discov 2024;14:76-89.  DOI  PubMed  PMC
               113.      Stenzl A, Feyerabend S, Syndikus I, et al. Results of the randomized, placebo-controlled phase I/IIB trial of CV9104, an mRNA
                    based cancer immunotherapy, in patients with metastatic castration-resistant prostate cancer (mCRPC). J Immunother Cancer
                    2017;28:V408-9.  DOI
               114.      de la Garcia-Hernandez ML, Gray A, Hubby B, Kast WM. In vivo effects of vaccination with six-transmembrane epithelial
                    antigen of the prostate: a candidate antigen for treating prostate cancer. Cancer Res 2007;67:1344-51.  DOI  PubMed
               115.      Zaffuto E, Pompe R, Zanaty M, et al. Contemporary incidence and cancer control outcomes of primary neuroendocrine prostate
                    cancer: a SEER database analysis. Clin Genitourin Cancer 2017;15:e793-800.  DOI
               116.      Bluemn EG, Coleman IM, Lucas JM, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF
                    signaling. Cancer Cell 2017;32:474-89.e6.  DOI  PubMed  PMC
               117.      Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep 2021;23:15.  DOI
                    PubMed  PMC
               118.      Puca L, Gavyert K, Sailer V, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci
                    Transl Med 2019;11:eaav0891.  DOI  PubMed  PMC
               119.      Hipp S, Voynov V, Drobits-Handl B, et al. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in
   21   22   23   24   25   26   27   28   29   30   31