Page 26 - Read Online
P. 26
Page 74 Bhasin et al. J Transl Genet Genom 2024;8:55-76 https://dx.doi.org/10.20517/jtgg.2023.46
2020;31:S507. DOI
92. Subudhi SK, Siddiqui BA, Maly JJ, et al. Safety and efficacy of AMG 160, a half-life extended BiTE immune therapy targeting
prostate-specific membrane antigen (PSMA), and other therapies for metastatic castration-resistant prostate cancer (mCRPC). J Clin
Oncol 2021;39:TPS5088. DOI
93. Hernandez-Hoyos G, Sewell T, Bader R, et al. MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of
metastatic castration-resistant prostate cancer. Mol Cancer Ther 2016;15:2155-65. DOI
94. Lim EA, Schweizer MT, Chi KN, et al. Phase 1 study of safety and preliminary clinical activity of JNJ-63898081, a PSMA and CD3
bispecific antibody, for metastatic castration-resistant prostate cancer. Clin Genitourin Cancer 2023;21:366-75. DOI PubMed PMC
95. De Bono JSD, Fong L, Beer TM, et al. Results of an ongoing phase 1/2a dose escalation study of HPN424, a tri-specific
half-life extended PSMA-targeting T-cell engager, in patients with metastatic castration-resistant prostate cancer (mCRPC). J
Clin Oncol 2021;39:5013. DOI
96. Heitmann JS, Walz JS, Pflügler M, et al. Abstract CT141: CC-1, a bispecific PSMAxCD3 antibody for treatment of prostate
carcinoma: results of the ongoing phase I dose escalation trial. Cancer Res 2022;82:CT141. DOI
97. Reiter RE, Gu Z, Watabe T, et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad
Sci USA 1998;95:1735-40. DOI PubMed PMC
98. Raff AB, Gray A, Kast WM. Prostate stem cell antigen: a prospective therapeutic and diagnostic target. Cancer Lett 2009;277:126-
32. DOI PubMed PMC
99. Saeki N, Gu J, Yoshida T, Wu X. Prostate stem cell antigen: a Jekyll and Hyde molecule? Clin Cancer Res 2010;16:3533-8. DOI
PubMed PMC
100. Gu Z, Thomas G, Yamashiro J, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage
and bone metastasis in prostate cancer. Oncogene 2000;19:1288-96. DOI
101. Xu M, Evans L, Bizzaro CL, et al. STEAP1-4 (six-transmembrane epithelial antigen of the prostate 1-4) and their clinical
implications for prostate cancer. Cancers 2022;14:4034. DOI PubMed PMC
102. Ohgami RS, Campagna DR, McDonald A, Fleming MD. The steap proteins are metalloreductases. Blood 2006;108:1388-94. DOI
PubMed PMC
103. Knutson MD. Steap proteins: implications for iron and copper metabolism. Nutr Rev 2007;65:335-40. DOI PubMed
104. Gomes IM, Rocha SM, Gaspar C, et al. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer
cells counteracting the effect of androgens. Med Oncol 2018;35:40. DOI
105. Yamamoto T, Tamura Y, Kobayashi J, et al. Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor
growth via intercellular communication. Exp Cell Res 2013;319:2617-26. DOI
106. Rodeberg DA, Nuss RA, Elsawa SF, Celis E. Recognition of six-transmembrane epithelial antigen of the prostate-expressing tumor
cells by peptide antigen-induced cytotoxic T lymphocytes. Clin Cancer Res 2005;11:4545-52. DOI PubMed PMC
107. Lin TY, Park JA, Long A, Guo HF, Cheung NV. Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer
immunotherapy. J Immunother Cancer 2021;9:e003114. DOI PubMed PMC
108. Bhatia V, Kamat NV, Pariva TE, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-
localized IL-12 immunotherapy. Nat Commun 2023;14:2041. DOI
109. Jin Y, Lorvik KB, Jin Y, et al. Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer.
Mol Ther Oncolytics 2022;26:189-206. DOI PubMed PMC
®
110. Li C, Fort M, Liang L, et al. 718 AMG 509, a STEAP1 × CD3 bispecific XmAb 2+1 immune therapy, exhibits avidity-driven
binding and preferential killing of high STEAP1-expressing prostate and Ewing sarcoma cancer cells. J Immunother Cancer
2020;8:A760. DOI
111. Danila DC, Waterhouse DM, Appleman LJ, et al. A phase 1 study of AMG 509 in patients (pts) with metastatic castration-resistant
prostate cancer (mCRPC). J Clin Oncol 2022;40:TPS5101. DOI
112. Kelly WK, Danila DC, Lin CC, et al. Xaluritamig, a STEAP1 × CD3 XmAb 2+1 immune therapy for metastatic castration-resistant
prostate cancer: results from dose exploration in a first-in-human study. Cancer Discov 2024;14:76-89. DOI PubMed PMC
113. Stenzl A, Feyerabend S, Syndikus I, et al. Results of the randomized, placebo-controlled phase I/IIB trial of CV9104, an mRNA
based cancer immunotherapy, in patients with metastatic castration-resistant prostate cancer (mCRPC). J Immunother Cancer
2017;28:V408-9. DOI
114. de la Garcia-Hernandez ML, Gray A, Hubby B, Kast WM. In vivo effects of vaccination with six-transmembrane epithelial
antigen of the prostate: a candidate antigen for treating prostate cancer. Cancer Res 2007;67:1344-51. DOI PubMed
115. Zaffuto E, Pompe R, Zanaty M, et al. Contemporary incidence and cancer control outcomes of primary neuroendocrine prostate
cancer: a SEER database analysis. Clin Genitourin Cancer 2017;15:e793-800. DOI
116. Bluemn EG, Coleman IM, Lucas JM, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF
signaling. Cancer Cell 2017;32:474-89.e6. DOI PubMed PMC
117. Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep 2021;23:15. DOI
PubMed PMC
118. Puca L, Gavyert K, Sailer V, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci
Transl Med 2019;11:eaav0891. DOI PubMed PMC
119. Hipp S, Voynov V, Drobits-Handl B, et al. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in