Page 77 - Read Online
P. 77

Page 14 of 15                                                         Fraser. J Transl Genet Genom 2018;2:21. I  https://doi.org/10.20517/jtgg.2018.27

                   function: implications for radiotherapy and chemotherapy. Clin Cancer Res 2012;18:1015-27.
               48.  Zimmermann M, Murina O, Reijns MAM, Agathanggelou A, Challis R, et al. CRISPR screens identify genomic ribonucleotides as a source
                   of PARP-trapping lesions. Nature 2018;559:285-9.
               49.  Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer.
                   Nat Genet 2015;47:736-45.
               50.  Zafarana G, Ishkanian AS, Malloff CA, Locke JA, Sykes J, et al. Copy number alterations of c-MYC and PTEN are prognostic factors for
                   relapse after prostate cancer radiotherapy. Cancer 2012;118:4053-62.
               51.  Locke JA, Zafarana G, Ishkanian AS, Milosevic M, Thoms J, et al. NKX3.1 haploinsufficiency is prognostic for prostate cancer relapse fol-
                   lowing surgery or image-guided radiotherapy. Clin Cancer Res 2012;18:308-16.
               52.  Ishkanian AS, Zafarana G, Thoms J, Bristow RG. Array CGH as a potential predictor of radiocurability in intermediate risk prostate cancer.
                   Acta Oncol 2010;49:888-94.
               53.  Castro E, Jugurnauth-Little S, Karlsson Q, Al-Shahrour F, Piñeiro-Yañez E, et al. High burden of copy number alterations and c-MYC am-
                   plification in prostate cancer from BRCA2 germline mutation carriers. Ann Oncol 2015;26:2293-300.
               54.  Risbridger GP, Taylor RA, Clouston D, Sliwinski A, Thorne H, et al. Patient-derived xenografts reveal that intraductal carcinoma of
                   the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis. Eur Urol
                   2015;67:496-503.
               55.  Berlin A, Lalonde E, Sykes J, Zafarana G, Chu KC, et al. NBN gain is predictive for adverse outcome following image-guided radiotherapy
                   for localized prostate cancer. Oncotarget 2014;5:11081-90.
               56.  Guo H, Ahmed M, Zhang F, Yao CQ, Li S, et al. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to
                   prostate cancer. Nat Genet 2016;48:1142-50.
               57.  Le Tallec B, Millot GA, Blin ME, Brison O, Dutrillaux B, et al. Common fragile site profiling in epithelial and erythroid cells reveals that
                   most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 2013;4:420-8.
               58.  Lalonde E, Ishkanian AS, Sykes J, Fraser M, Ross-Adams H, et al. Tumour genomic and microenvironmental heterogeneity for integrated
                   prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol 2014;15:1521-32.
               59.  Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, et al. Copy number alteration burden predicts prostate cancer relapse. Proc
                   Natl Acad Sci U S A 2014;111:11139-44.
               60.  Lalonde E, Alkallas R, Chua MLK, Fraser M, Haider S, et al. Translating a prognostic DNA genomic classifier into the clinic: retrospective
                   validation in 563 localized prostate tumors. Eur Urol 2017;72:22-31.
               61.  Blattner M, Liu D, Robinson BD, Huang D, Poliakov A, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate
                   regulation of PI3K/mTOR and AR signaling. Cancer Cell 2017;31:436-51.
               62.  Hjorth-Jensen K, Maya-Mendoza A, Dalgaard N, Sigurðsson JO, Bartek J, et al. SPOP promotes transcriptional expression of DNA repair
                   and replication factors to prevent replication stress and genomic instability. Nucleic Acids Res 2018;46:9484-95.
               63.  Burkhardt L, Fuchs S, Krohn A, Masser S, Mader M, et al. CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate
                   cancer. Cancer Res 2013;73:2795-805.
               64.  Geng C, Rajapakshe K, Shah SS, Shou J, Eedunuri VK, et al. Androgen receptor is the key transcriptional mediator of the tumor suppressor
                   SPOP in prostate cancer. Cancer Res 2014;74:5631-43.
               65.  Mateo J, Boysen G, Barbieri CE, Bryant HE, Castro E, et al. DNA repair in prostate cancer: biology and clinical implications. Eur Urol
                   2017;71:417-25.
               66.  Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, et al. Inherited DNA-repair gene mutations in men with metastatic prostate can-
                   cer. N Engl J Med 2016;375:443-53.
               67.  Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med
                   2015;373:1697-708.
               68.  Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, et al. Differential oestrogen receptor binding is associated with clinical out-
                   come in breast cancer. Nature 2012;481:389-93.
               69.  Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, et al. The genomic complexity of primary human prostate cancer. Nature
                   2011;470:214-20.
               70.  Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010;24:1967-2000.
               71.  Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, et al. Punctuated evolution of prostate cancer genomes. Cell 2013;153:666-77.
               72.  Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, et al. Integrative genomic analyses reveal an androgen-driven so-
                   matic alteration landscape in early-onset prostate cancer. Cancer Cell 2013;23:159-70.
               73.  Buyyounouski MK, Pickles T, Kestin LL, Allison R, Williams SG. Validating the interval to biochemical failure for the identification of po-
                   tentially lethal prostate cancer. J Clin Oncol 2012;30:1857-63.
               74.  Noguchi M, Stamey TA, McNeal JE, Nolley R. Prognostic factors for multifocal prostate cancer in radical prostatectomy specimens: lack of
                   significance of secondary cancers. J Urol 2003;170:459-63.
               75.  Wise AM, Stamey TA, McNeal JE, Clayton JL. Morphologic and clinical significance of multifocal prostate cancers in radical prostatec-
                   tomy specimens. Urology 2002;60:264-9.
               76.  Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, et al. Tracking the clonal origin of lethal prostate cancer. J Clin Invest
                   2013;123:4918-22.
               77.  Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies
                   multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet 2015;47:367-72.
   72   73   74   75   76   77   78   79   80   81   82