Page 59 - Read Online
P. 59

Liu et al. J Mater Inf 2022;2:20  https://dx.doi.org/10.20517/jmi.2022.29        Page 11 of 12

               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               This work is supported by the China National Natural Science Foundation (No. 52071217).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.       Takeuchi A, Gao MC, Qiao J, Widom M. High-entropy metallic glasses. In: Gao MC, Yeh J-W, Liaw PK, Zhang Y, editors. High-
                   entropy alloys: fundamentals and applications. Cham: Springer International Publishing; 2016. pp. 445-68.
               2.       Glasscott MW, Pendergast AD, Goines S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-
                   functional electrocatalysis. Nat Commun 2019;10:2650.  DOI
               3.       Jia Z, Nomoto K, Wang Q, et al. A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen
                   evolution under alkaline and acidic conditions. Adv Funct Mater 2021;31:2101586.  DOI
               4.       Wang Y, Zhang K, Feng Y, et al. Excellent irradiation tolerance and mechanical behaviors in high-entropy metallic glasses. J Nucl
                   Mater 2019;527:151785.  DOI
               5.       Cemin F, Luís Artico L, Piroli V, Andrés Yunes J, Alejandro Figueroa C, Alvarez F. Superior in vitro biocompatibility in
                   NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications. Appl Surf Sci 2022;596:153615.  DOI
               6.       Wang X, Dai W, Zhang M, Gong P, Li N. Thermoplastic micro-formability of TiZrHfNiCuBe high entropy metallic glass. J Mater Sci
                   Technol 2018;34:2006-13.  DOI
               7.       Qiao J, Wang Q, Pelletier J, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Prog Mater Sci
                   2019;104:250-329.  DOI
               8.       Hu YC, Li FX, Li MZ, Bai HY, Wang WH. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nat
                   Commun 2015;6:8310.  DOI  PubMed  PMC
               9.       Gao M, Perepezko JH. Mapping the viscoelastic heterogeneity at the nanoscale in metallic glasses by static force spectroscopy. Nano
                   Lett 2020;20:7558-65.  DOI  PubMed
               10.      Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 1977;25:407-15.  DOI
               11.      Perez J. Quasi-punctual defects in vitreous solids and liquid-glass transition. Solid State Ionics 1990;39:69-79.  DOI
               12.      Peng HL, Li MZ, Wang WH. Structural signature of plastic deformation in metallic glasses. Phys Rev Lett 2011;106:135503.  DOI
                   PubMed
               13.      Ma E. Tuning order in disorder. Nat Mater 2015;14:547-52.  DOI  PubMed
               14.      Rieser JM, Goodrich CP, Liu AJ, Durian DJ. Divergence of voronoi cell anisotropy vector: a threshold-free characterization of local
                   structure in amorphous materials. Phys Rev Lett 2016;116:088001.  DOI  PubMed
               15.      Ding J, Patinet S, Falk ML, Cheng Y, Ma E. Soft spots and their structural signature in a metallic glass. Proc Natl Acad Sci USA
                   2014;111:14052-6.  DOI  PubMed  PMC
               16.      Widmer-cooper A, Perry H, Harrowell P, Reichman DR. Irreversible reorganization in a supercooled liquid originates from localized
                   soft modes. Nat Phys 2008;4:711-5.  DOI
               17.      Wei D, Yang J, Jiang M, Wei B, Wang Y, Dai L. Revisiting the structure-property relationship of metallic glasses: common spatial
                   correlation revealed as a hidden rule. Phys Rev B 2019:99.  DOI
               18.      Dyre JC. Colloquium: the glass transition and elastic models of glass-forming liquids. Rev Mod Phys 2006;78:953-72.  DOI
               19.      Tong Y, Qiao J, Zhang C, Pelletier J, Yao Y. Mechanical properties of Ti  Zr  Hf  Cu  Ni  Be   high-entropy bulk metallic
                                                                    16.7  16.7  16.7  16.7  16.7  16.7
                   glass. J Non-Cryst Solids 2016;452:57-61.  DOI
               20.      Kim J, Oh HS, Kim J, et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass. Acta
                   Mater 2018;155:350-61.  DOI
   54   55   56   57   58   59   60   61   62   63   64