Page 84 - Read Online
P. 84

Page 16 of 18             Monaco et al. J Environ Expo Assess 2024;3:18  https://dx.doi.org/10.20517/jeea.2024.10

               10.      Liu Y, Xiao M, Huang K, et al. Phthalate metabolites in breast milk from mothers in Southern China: occurrence, temporal trends,
                   daily intake, and risk assessment. J Hazard Mater 2024;464:132895.  DOI  PubMed
               11.      Krithivasan R, Miller GZ, Belliveau M, et al. Analysis of ortho-phthalates and other plasticizers in select organic and conventional
                   foods in the United States. J Expo Sci Environ Epidemiol 2023;33:778-86.  DOI  PubMed
               12.      Kim JH, Moon N, Ji E, Moon HB. Effects of postnatal exposure to phthalate, bisphenol a, triclosan, parabens, and per- and poly-
                   fluoroalkyl substances on maternal postpartum depression and infant neurodevelopment: a korean mother-infant pair cohort study.
                   Environ Sci Pollut Res Int 2023;30:96384-99.  DOI  PubMed
               13.      Lambré C, Barat Baviera JM, Bolognesi C, et al; EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP).
                   Identification and prioritisation for risk assessment of phthalates, structurally similar substances and replacement substances
                   potentially used as plasticisers in materials and articles intended to come into contact with food. EFSA J 2022;20:e07231.  DOI
                   PubMed  PMC
               14.      Laccetta G, Di Chiara M, Cardillo A, De Nardo MC, Terrin G. The effects of industrial chemicals bonded to plastic materials in
                   newborns: a systematic review. Environ Res 2023;239:117298.  DOI  PubMed
               15.      Guilloteau P, Zabielski R, Hammon HM, Metges CC. Nutritional programming of gastrointestinal tract development. Is the pig a good
                   model for man? Nutr Res Rev 2010;23:4-22.  DOI  PubMed
               16.      Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota.
                   Nutr Res Rev 2013;26:191-209.  DOI  PubMed
               17.      Zhou C, Gao L, Flaws JA. Exposure to an environmentally relevant phthalate mixture causes transgenerational effects on female
                   reproduction in mice. Endocrinology 2017;158:1739-54.  DOI  PubMed  PMC
               18.      Gill S, Brehm E, Leon K, Chiu J, Meling DD, Flaws JA. Prenatal exposure to an environmentally relevant phthalate mixture alters
                   ovarian steroidogenesis and folliculogenesis in the F1 generation of adult female mice. Reprod Toxicol 2021;106:25-31.  DOI  PubMed
                   PMC
               19.      Lee Y, Rattan S, Barakat R, et al. Early postnatal exposure to di(2-ethylhexyl) phthalate causes sex-specific disruption of gonadal
                   development in pigs. Reprod Toxicol 2021;105:53-61.  DOI  PubMed  PMC
               20.      National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the
                   care and use of laboratory animals, 8th edition. Washington (DC): National Academies Press (US); 2011. Available from: https://
                   www.ncbi.nlm.nih.gov/books/NBK54050/. [Last accessed on 14 Aug 2024].
               21.      Den Braver-Sewradj SP, Piersma A, Hessel EVS. An update on the hazard of and exposure to diethyl hexyl phthalate (DEHP)
                   alternatives used in medical devices. Crit Rev Toxicol 2020;50:650-72.  DOI  PubMed
               22.     Schettler T. Human exposure to phthalates via consumer products. Int J Androl 2006;29:134-9.  DOI  PubMed
               23.      Chiang C, Lewis LR, Borkowski G, Flaws JA. Exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate during adulthood
                   disrupts hormones and ovarian folliculogenesis throughout the prime reproductive life of the mouse. Toxicol Appl Pharmacol
                   2020;393:114952.  DOI  PubMed  PMC
               24.      Hartke JL, Monaco MH, Wheeler MB, Donovan SM. Effect of a short-term fast on intestinal disaccharidase activity and villus
                   morphology of piglets suckling insulin-like growth factor-I transgenic sows. J Anim Sci 2005;83:2404-13.  DOI  PubMed
               25.      Dudley MA, Jahoor F, Burrin DG, Reeds PJ. Brush-border disaccharidase synthesis in infant pigs measured in vivo with [2H3]leucine.
                   Am J Physiol 1994;267:G1128-34.  DOI  PubMed
               26.      Warner GR, Li Z, Houde ML, et al. Ovarian metabolism of an environmentally relevant phthalate mixture. Toxicol Sci 2019;169:246-
                   59.  DOI  PubMed  PMC
               27.      Li M, Bauer LL, Chen X, et al. Microbial composition and in vitro fermentation patterns of human milk oligosaccharides and
                   prebiotics differ between formula-fed and sow-reared piglets. J Nutr 2012;142:681-9.  DOI  PubMed  PMC
               28.      Callahan BJ, Wong J, Heiner C, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide
                   resolution. Nucleic Acids Res 2019;47:e103.  DOI  PubMed  PMC
               29.      Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina
                   amplicon data. Nat Methods 2016;13:581-3.  DOI  PubMed  PMC
               30.      Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
                   Nat Biotechnol 2019;37:852-7.  DOI  PubMed  PMC
               31.      Smith BN, Hannas M, Orso C, et al. Dietary osteopontin-enriched algal protein as nutritional support in weaned pigs infected with
                   F18-fimbriated enterotoxigenic Escherichia coli. J Anim Sci 2020;98:skaa314.  DOI  PubMed  PMC
               32.      Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s
                   q2-feature-classifier plugin. Microbiome 2018;6:90.  DOI  PubMed  PMC
               33.      Pedregosa F, Varoquau, G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011;12:2825-30. Available
                   from: https://dl.acm.org/doi/pdf/10.5555/1953048.2078195. [Last accessed on 14 Aug 2024]
               34.      Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based
                   tools. Nucleic Acids Res 2013;41:D590-6.  DOI  PubMed  PMC
               35.      Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol
                   2014;15:550.  DOI  PubMed  PMC
               36.      Hagerty SL, Hutchison KE, Lowry CA, Bryan AD. An empirically derived method for measuring human gut microbiome alpha
                   diversity: demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS One 2020;15:e0229204.
   79   80   81   82   83   84   85   86   87   88   89