Page 582 - Read Online
P. 582

Page 18 of 19                   Cordover et al. J Cancer Metastasis Treat 2020;6:45  I  http://dx.doi.org/10.20517/2394-4722.2020.101

               85.  Hua H, Kong QB, Zhang HY, Wang J, Luo T, Jiang YF. Targeting mTOR for cancer therapy. J Hematol Oncol 2019;12:71.
               86.  Chen D, Lin X, Zhang C, et al. Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric
                   cancer via targeting PI3K/Akt/mTOR pathway. Cell Death Dis 2018;9:123.
               87.  Soares HP, Ming M, Mellon M, et al. Dual PI3K/mTOR inhibitors induce rapid overactivation of the MEK/ERK pathway in human
                   pancreatic cancer cells through suppression of mTORC2. Mol Cancer Ther 2015;14:1014-23.
               88.  Choi HJ, Heo JH, Park JY, et al. A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer.
                   Gynecol Oncol 2019;153:135-48.
               89.  Eswaran J, Soundararajan M, Kumar R, Knapp S. UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci
                   2008;33:394-403.
               90.  Kumar R, Li DQ. PAKs in human cancer progression: from inception to cancer therapeutic to future oncobiology. Adv Cancer Res
                   2016;130:137-209.
               91.  Rane CK, Minden A. P21 activated kinase signaling in cancer. Semin Cancer Biol 2019;54:40-9.
               92.  Liu Y, Xiao H, Tian Y, et al. The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol Cancer Res
                   2008;6:1215-24.
               93.  Zhou W, Jubb AM, Lyle K, et al. PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. J Pathol
                   2014;234:502-13.
               94.  Thillai K, Lam H, Sarker D, Wells CM. Deciphering the link between PI3K and PAK: an opportunity to target key pathways in pancreatic
                   cancer? Oncotarget 2017;8:14173-91.
               95.  Chen S, Auletta T, Dovirak O, et al. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol
                   Ther 2008;7:1793-802.
               96.  Dart AE, Box GM, Court W, et al. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J Cell Biol
                   2015;211:863-79.
               97.  Kimmelman AC, Hezel AF, Aguirre AJ, et al. Genomic alterations link Rho family of GTPases to the highly invasive phenotype of
                   pancreas cancer. Proc Natl Acad Sci U S A 2008;105:19372-7.
               98.  Mahlamäki EH, Kauraniemi P, Monni O, Wolf M, Hautaniemi S, Kallioniemi A. High-resolution genomic and expression profiling
                   reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia 2004;6:432-9.
               99.  Begum A, Imoto I, Kozaki K, et al. Identification of PAK4 as a putative target gene for amplification within 19q13.12-q13.2 in oral
                   squamous-cell carcinoma. Cancer Sci 2009;100:1908-16.
               100. Davis SJ, Sheppard KE, Pearson RB, Campbell IG, Gorringe KL, Simpson KJ. Functional analysis of genes in regions commonly
                   amplified in high-grade serous and endometrioid ovarian cancer. Clin Cancer Res 2013;19:1411-21.
               101. Liu Y, Chen N, Cui X, et al. The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis.
                   Oncogene 2010;29:5883-94.
               102. He LF, Xu HW, Chen M, et al. Activated-PAK4 predicts worse prognosis in breast cancer and promotes tumorigenesis through activation
                   of PI3K/AKT signaling. Oncotarget 2017;8:17573-85.
               103. Bi Y, Tian M, Le J, et al. Study on the expression of PAK4 and P54 protein in breast cancer. World J Surg Oncol 2016;14:160.
               104. Minden A. The pak4 protein kinase in breast cancer. ISRN Oncol 2012;2012:694201.
               105. Zhuang T, Zhu J, Li Z, et al. p21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha
                   signaling and restores tamoxifen-sensitivity in breast cancer cells. Oncotarget 2015;6:43853-68.
               106. Abo A, Qu J, Cammarano MS, et al. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and
                   in the formation of filopodia. EMBO J 1998;17:6527-40.
               107. Li X, Minden A. PAK4 functions in tumor necrosis factor (TNF) alpha-induced survival pathways by facilitating TRADD binding to the
                   TNF receptor. J Biol Chem 2005;280:41192-200.
               108. Gnesutta N, Minden A. Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4. Mol Cell
                   Biol 2003;23:7838-48.
               109. Gnesutta N, Qu J, Minden A. The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol
                   Chem 2001;276:14414-9.
               110.  Murray BW, Guo C, Piraino J, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic
                   signaling and tumor growth. Proc Natl Acad Sci U S A 2010;107:9446-51.
               111.  Staben ST, Feng JA, Lyle K, et al. Back pocket flexibility provides group II p21-activated kinase (PAK) selectivity for type I 1/2 kinase
                   inhibitors. J Med Chem 2014;57:1033-45.
               112.  Yeo D, Huynh N, Beutler JA, et al. Glaucarubinone and gemcitabine synergistically reduce pancreatic cancer growth via down-regulation
                   of P21-activated kinases. Cancer Lett 2014;346:264-72.
               113.  Ryu BJ, Kim S, Min B, et al. Discovery and the structural basis of a novel p21-activated kinase 4 inhibitor. Cancer Lett 2014;349:45-50.
               114.  Rane C, Senapedis W, Baloglu E, et al. A novel orally bioavailable compound KPT-9274 inhibits PAK4, and blocks triple negative breast
                   cancer tumor growth. Sci Rep 2017;7:42555.
               115.  Abu Aboud O, Chen CH, Senapedis W, Baloglu E, Argueta C, Weiss RH. Dual and specific inhibition of NAMPT and PAK4 By KPT-
                   9274 decreases kidney cancer growth. Mol Cancer Ther 2016;15:2119-29.
               116.  Aboukameel A, Muqbil I, Senapedis W, et al. Novel p21-activated kinase 4 (PAK4) allosteric modulators overcome drug resistance and
                   stemness in pancreatic ductal adenocarcinoma. Mol Cancer Ther 2017;16:76-87.
               117.  Fulciniti M, Martinez-Lopez J, Senapedis W, et al. Functional role and therapeutic targeting of p21-activated kinase 4 in multiple
   577   578   579   580   581   582   583   584   585   586   587