Page 580 - Read Online
P. 580

Page 16 of 19                   Cordover et al. J Cancer Metastasis Treat 2020;6:45  I  http://dx.doi.org/10.20517/2394-4722.2020.101

                   alternative prenylation to mislocalize K-Ras. ACS Chem Biol 2017;12:1956-62.
               14.  O’Bryan JP. Pharmacological targeting of RAS: recent success with direct inhibitors. Pharmacol Res 2019;139:503-11.
               15.  Mullard A. Cracking KRAS. Nat Rev Drug Discov 2019;18:887-891.
               16.  Canon J, Rex K, Saiki AY, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019;575:217-23.
               17.  Seton-Rogers S. KRAS-G12C in the crosshairs. Nat Rev Cancer 2020;20:3.
               18.  Muratcioglu S, Chavan TS, Freed BC, et al. GTP-dependent K-Ras dimerization. Structure 2015;23:1325-35.
               19.  Ambrogio C, Köhler J, Zhou ZW, et al. KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS.
                   Cell 2018; 172:857-68.e15.
               20.  Durrant DE, Morrison DK. Targeting the Raf kinases in human cancer: the Raf dimer dilemma. Br J Cancer 2018;118:3-8.
               21.  Matallanas D, Birtwistle M, Romano D, et al. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011;2:232-60.
               22.  Croce L, Coperchini F, Magri F, Chiovato L, Rotondi M. The multifaceted anti-cancer effects of BRAF-inhibitors. Oncotarget
                   2019;10:6623-40.
               23.  Ritterhouse LL, Barletta JA. BRAF V600E mutation-specific antibody: a review. Semin Diagn Pathol 2015;32:400-8.
               24.  Falchook GS, Lewis KD, Infante JR, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1
                   dose-escalation trial. Lancet Oncol 2012;13:782-9.
               25.  Rosen LS, LoRusso P, Ma WW, et al. A first-in-human phase I study to evaluate the MEK1/2 inhibitor, cobimetinib, administered daily in
                   patients with advanced solid tumors. Invest New Drugs 2016;34:604-13.
               26.  Grimaldi AM, Simeone E, Festino L, Vanella V, Palla M, Ascierto PA. Novel mechanisms and therapeutic approaches in melanoma:
                   targeting the MAPK pathway. Discov Med 2015;19:455-61.
               27.  Maik-Rachline G, Hacohen-Lev-Ran A, Seger R. Nuclear ERK: mechanism of translocation, substrates, and role in cancer. Int J Mol Sci
                   2019;20:1194.
               28.  Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer
                   2014;120:3446-56.
               29.  Marampon F, Ciccarelli C, Zani BM. Biological rationale for targeting MEK/ERK pathways in anti-cancer therapy and to potentiate
                   tumour responses to radiation. Int J Mol Sci 2019;20.
               30.  Smalley I, Smalley KSM. ERK inhibition: a new front in the war against MAPK pathway-driven cancers? Cancer Discov 2018;8:140-2.
               31.  Sullivan RJ, Infante JR, Janku F, et al. First-in-class ERK1/2 inhibitor Ulixertinib (BVD-523) in patients with MAPK mutant advanced
                   solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov 2018;8:184-95.
               32.  Jaiswal BS, Durinck S, Stawiski EW, et al. ERK mutations and amplification confer resistance to ERK-inhibitor therapy. Clin Cancer Res
                   2018;24:4044-55.
               33.  Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 2010;146:264-75.
               34.  Hsu JL, Hung MC. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev 2016;35:575-88.
               35.  Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 2017;9:52.
               36.  Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene 2000;19:5636-42.
               37.  Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene
                   2007;26:6469-87.
               38.  Guo P, Pu T, Chen S, et al. Breast cancers with EGFR and HER2 co-amplification favor distant metastasis and poor clinical outcome.
                   Oncol Lett 2017;14:6562-70.
               39.  Iqbal N and Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol
                   Biol Int 2014;2014:852748.
               40.  Belsches-Jablonski AP, Biscardi JS, Peavy DR, Tice DA, Romney DA, Parsons SJ. Src family kinases and HER2 interactions in human
                   breast cancer cell growth and survival. Oncogene 2001;20:1465-75.
               41.  Freudenberg JA, Wang Q, Katsumata M, Drebin J, Nagatomo I, Greene MI. The role of HER2 in early breast cancer metastasis and the
                   origins of resistance to HER2-targeted therapies. Exp Mol Pathol 2009;87:1-11.
               42.  Li YM, Pan Y, Wei YK, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 2004;6:459-69.
               43.  Timms JF, White SL, O’Hare MJ, Waterfield MD. Effects of ErbB-2 overexpression on mitogenic signalling and cell cycle progression in
                   human breast luminal epithelial cells. Oncogene 2002;21:6573-86.
               44.  Siadati S, Sharbatdaran M, Nikbakhsh N, Ghaemian N. Correlation of ER, PR and HER-2/Neu with other prognostic factors in infiltrating
                   ductal carcinoma of breast. Iran J Pathol 2015;10:221-6.
               45.  Linderholm B, Andersson J, Lindh B, et al. Overexpression of c-erbB-2 is related to a higher expression of vascular endothelial growth
                   factor (VEGF) and constitutes an independent prognostic factor in primary node-positive breast cancer after adjuvant systemic treatment.
                   Eur J Cancer 2004;40:33-42.
               46.  van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 2008;65:3756-88.
               47.  Schroeder JA, Adriance MC, McConnell EJ, Thompson MC, Pockaj B, Gendler SJ. ErbB-beta-catenin complexes are associated with
                   human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J Biol
                   Chem 2002;277:22692-8.
               48.  Rexer BN, Arteaga CL. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms
                   and clinical implications. Crit Rev Oncog 2012;17:1-16.
               49.  Cuello M, Ettenberg SA, Clark AS, et al. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis
                   factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res
   575   576   577   578   579   580   581   582   583   584   585