Page 581 - Read Online
P. 581

Cordover et al. J Cancer Metastasis Treat 2020;6:45  I  http://dx.doi.org/10.20517/2394-4722.2020.101                  Page 17 of 19

                   2001;61:4892-900.
               50.  Junttila TT, Akita RW, Parsons K, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively
                   inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 2009;15:429-40.
               51.  Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert
                   Rev Anticancer Ther 2011;11:263-75.
               52.  Yakes FM, Chinratanalab W, Ritter RA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and
                   Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 2002;62:4132-41.
               53.  Parra-Palau JL, Morancho B, Peg V, et al. Effect of p95HER2/611CTF on the response to trastuzumab and chemotherapy. J Natl Cancer
                   Inst 2014;106:dju291.
               54.  Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res 2009;15:7479-91.
               55.  Scaltriti M, Chandarlapaty S, Prudkin L, et al. Clinical benefit of lapatinib-based therapy in patients with human epidermal growth factor
                   receptor 2-positive breast tumors coexpressing the truncated p95HER2 receptor. Clin Cancer Res 2010;16:2688-95.
               56.  Collins DM, Conlon NT, Kannan S, et al. Preclinical characteristics of the irreversible Pan-HER kinase inhibitor neratinib compared with
                   lapatinib: implications for the treatment of HER2-positive and HER2-mutated breast cancer. Cancers (Basel) 2019;11:737.
               57.  Saura C, Oliveira M, Feng YH, et al; NALA Investigators. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive
                   metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: phase III NALA trial. J Clin Oncol 2020;38:3138-49.
               58.  Nagy P, Friedländer E, Tanner M, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-
                   expressing breast cancer cell line. Cancer Res 2005;65:473-82.
               59.  Gu S, Hu Z, Ngamcherdtrakul W, et al. Therapeutic siRNA for drug-resistant HER2-positive breast cancer. Oncotarget 2016;7:14727-41.
               60.  Faltus T, Yuan J, Zimmer B, et al. Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-
                   overexpressing breast cancer cells. Neoplasia 2004;6:786-95.
               61.  Gu S, Ngamcherdtrakul W, Reda M, Hu Z, Gray JW, Yantasee W. Lack of acquired resistance in HER2-positive breast cancer cells after
                   long-term HER2 siRNA nanoparticle treatment. PLoS One 2018;13:e0198141.
               62.  Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S. Signal transduction pathways in breast cancer: the
                   important role of PI3K/Akt/mTOR. J Oncol 2020;2020:9258396.
               63.  Jean S, Kiger AA. Classes of phosphoinositide 3-kinases at a glance. J Cell Sci 2014;127:923-8.
               64.  Papa A, Pandolfi PP. The PTEN-PI3K axis in cancer. Biomolecules 2019;9:153.
               65.  Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci 2012;13:1886-918.
               66.  Chamcheu JC, Roy T, Uddin MB, et al. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer: a review
                   of current status and future trends on natural and synthetic agents therapy. Cells 2019;8:803.
               67.  Luo Y, Xu W, Li G, Cui W. Weighing in on mTOR Complex 2 signaling: the expanding role in cell metabolism. Oxid Med Cell Longev
                   2018;2018:7838647.
               68.  Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008;27:5497-510.
               69.  Tornillo L, Terracciano LM. An update on molecular genetics of gastrointestinal stromal tumours. J Clin Pathol 2006;59:557-63.
               70.  Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F. Overexpression of platelet-derived growth factor receptor alpha in breast cancer
                   is associated with tumour progression. Breast Cancer Res 2005;7:R788-95.
               71.  Samuels Y, Waldman T. Oncogenic mutations of PIK3CA in human cancers. Curr Top Microbiol Immunol 2010;347: 21-41.
               72.  Hyman DM, Smyth LM, Donoghue MTA, et al. AKT inhibition in solid tumors with AKT1 mutations. J Clin Oncol 2017;35:2251-9.
               73.  Grabiner BC, Nardi V, Birsoy K, et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict
                   rapamycin sensitivity. Cancer Discov 2014;4:554-63.
               74.  Akinleye A, Avvaru P, Furqan M, Song YP, Liu DL. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol
                   Oncol 2013;6:88.
               75.  Maira SM, Pecchi S, Huang A, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase
                   inhibitor. Mol Cancer Ther 2012;11:317-28.
               76.  Liu N, Rowley BR, Bull CO, et al. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities
                   in tumor cell lines and xenograft models. Mol Cancer Ther 2013;12:2319-30.
               77.  Hanker AB, Kaklamani V, Arteaga CL. Challenges for the clinical development of PI3K inhibitors: strategies to improve their impact in
                   solid tumors. Cancer Discov 2019;9:482-91.
               78.  Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer
                   2019;18:26.
               79.  Wang X, Ding J, Meng LH. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin
                   2015;36:1170-6.
               80.  Fritsch C, Huang A, Chatenay-Rivauday C, et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and
                   development of the patient stratification strategy for clinical trials. Mol Cancer Ther 2014;13:1117-29.
               81.  Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/CXCR4 Axis in tumor immunotherapy. Curr Med Chem
                   2019;26:3026-41.
               82.  Schwartz S, Wongvipat J, Trigwell CB, et al. Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective
                   inhibition of PI3Kβ. Cancer Cell 2015;27:109-22.
               83.  Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 2019;21:63-71.
               84.  Tian T, Li X, Zhang J. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci 2019;20:755.
   576   577   578   579   580   581   582   583   584   585   586