Page 484 - Read Online
P. 484

Page 36 of 40                         Maner et al. J Cancer Metastasis Treat 2020;6:37  I  http://dx.doi.org/10.20517/2394-4722.2020.60

               84.  Berhane T, Halliday GM, Cooke B, Barnetson RS. Inflammation is associated with progression of actinic keratoses to squamous cell
                   carcinomas in humans. Br J Dermatol 2002;146:810-5.
               85.  Maru GB, Gandhi K, Ramchandani A, Kumar G. The role of inflammation in skin cancer. Adv Exp Med Biol 2014;816:437-69.
               86.  Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009;9:798-809.
               87.  Scola N, Skrygan M, Wieland U, Kreuter A, Gambichler T. Altered gene expression in squamous cell carcinoma arising from congenital
                   unilateral linear porokeratosis. Clin Exp Dermatol 2012;37:781-5.
               88.  Pi J, Diwan BA, Sun Y, Liu J, Qu W, et al. Arsenic-induced malignant transformation of human keratinocytes: involvement of Nrf2. Free
                   Radic Biol Med 2008;45:651-8.
               89.  Colman JA. Arsenic and uranium in water from private wells completed in bedrock of east-central Massachusetts-Concentrations,
                   correlations with bedrock units, and estimated probability maps. Sci Invest Rep 2011; doi: 10.3133/sir20115013.
               90.  Li C, Srivastava RK, Elmets CA, Afaq F, Athar M. Arsenic-induced cutaneous hyperplastic lesions are associated with the dysregulation
                   of Yap, a Hippo signaling-related protein. Biochem Biophys Res Commun 2013;438:607-12.
               91.  Poulalhon N, Dalle S, Balme B, Thomas L. Fast-growing cutaneous squamous cell carcinoma in a patient treated with vismodegib.
                   Dermatology 2015;230:101-4.
               92.  Nissinen L, Farshchian M, Riihilä P, Kähäri VM. New perspectives on role of tumor microenvironment in progression of cutaneous
                   squamous cell carcinoma. Cell Tissue Res 2016;365:691-702.
               93.  Zgraggen S, Huggenberger R, Kerl K, Detmar M. An important role of the SDF-1/CXCR4 axis in chronic skin inflammation. PLoS One
                   2014;9:e93665.
               94.  Sinha S, Su S, Workentine M, Agabalyan N, Cheng M, et al. Transcriptional analysis reveals evidence of chronically impeded ECM
                   turnover and epithelium-to-mesenchyme transition in scar tissue giving rise to marjolin's ulcer. J Burn Care Res 2017;38:e14-22.
               95.  Peters FS, Peeters AMA, Mandaviya PR, van Meurs JBJ, Hofland LJ, et al. Differentially methylated regions in T cells identify kidney
                   transplant patients at risk for de novo skin cancer. Clin Epigenetics 2018;10:81.
               96.  Wysong A, Newman JG, Covington KR, Kurley SJ, Ibrahim SF, et al. Validation of a 40-gene expression profile test to predict metastatic
                   risk in localized high-risk cutaneous squamous cell carcinoma. J Am Acad Dermatol 2020; doi: 10.1016/j.jaad.2020.04.088.
               97.  Costache M, Desa LT, Mitrache LE, Pătraşcu OM, Dumitru A, et al. Cutaneous verrucous carcinoma - report of three cases with review of
                   literature. Rom J Morphol Embryol 2014;55:383-8.
               98.  Schell BJ, Rosen T, Rády P, Arany I, Tschen JA, et al. Verrucous carcinoma of the foot associated with human papillomavirus type 16. J
                   Am Acad Dermatol 2001;45:49-55.
               99.  Murao K, Kubo Y, Fukumoto D, Matsumoto K, Arase S. Verrucous carcinoma of the scalp associated with human papillomavirus type 33.
                   Dermatol Surg 2005;31:1363-5.
               100. Fujita S, Senba M, Kumatori A, Hayashi T, Ikeda T, et al. Human papillomavirus infection in oral verrucous carcinoma: genotyping
                   analysis and inverse correlation with p53 expression. Pathobiology 2008;75:257-64.
               101. Ren B. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev 2002;16:245-56.
               102. Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat 2005;37:319.
               103. Pătraşcu V, Geoloaica L, Ciurea R. Case report acral verrucous carcinoma. Curr Health Sci J 2019;45:235-40.
               104. Schumann H, Roth W, Has C, Volz A, Erfurt-Berge C, et al. Verrucous carcinoma in epidermolysis bullosa simplex is possibly associated
                   with a novel mutation in the keratin 5 gene. Br J Dermatol 2012;167:929-36.
               105. Jung H, Seong HA, Ha H. Critical role of cysteine residue 81 of macrophage migration inhibitory factor (MIF) in MIF-induced inhibition
                   of p53 activity. J Biol Chem 2008;283:20383-96.
               106. Coulombe PA, Lee CH. Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J Invest
                   Dermatol 2012;132:763-75.
               107. Bolling MC, Lemmink HH, Jansen GHL, Jonkman MF. Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75% of
                   the patients. Br J Dermatol 2011;164:637-44.
               108. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014;4.
               109. Deng Z, Wang Y, Fang X, Yan F, Pan H, et al. Research on miRNA-195 and target gene CDK6 in oral verrucous carcinoma. Cancer Gene
                   Ther 2017;24:282-8.
               110.  Deng Z, Wang Y, Fang X, Yan F, Pan H, et al. Research on miRNA-195 and target gene CDK6 in oral verrucous carcinoma. Cancer Gene
                   Ther 2017;24.
               111.  Adegboyega PA, Boromound N, Freeman DH. Diagnostic utility of cell cycle and apoptosis regulatory proteins in verrucous squamous
                   carcinoma. Appl Immunohistochem Mol Morphol 2005;13:171-7.
               112.  Kusume T, Tsuda H, Kawabata M, Inoue T, Umesaki N, et al. The p16-Cyclin D1/CDK4-pRb pathway and clinical outcome in epithelial
                   ovarian cancer. Clin Cancer Res 1999;5.
               113.  Al-Mohanna MA, Manogaran PS, Al-Mukhalafi Z, A Al-Hussein K, Aboussekhra A. The tumor suppressor p16INK4a gene is a regulator
                   of apoptosis induced by ultraviolet light and cisplatin. Oncogene 2004;23:201-12.
               114.  Bruno S, Darzynkiewicz Z. Cell cycle dependent expression and stability of the nuclear protein detected by Ki-67 antibody in HL-60
                   cells. Cell Proliferation 1992;25:31-40.
               115.  Mallick S, Breta M, Gupta SD, Dinda AK, Mohanty BK, et al. Angiogenesis, proliferative activity and DNA ploidy in oral verrucous
                   carcinoma: a comparative study including verrucous hyperplasia and squamous cell carcinoma. Pathol Oncol Res 2015;21:1249-57.
               116.  Yang G, Rosen DG, Liu G, Yang F, Guo X, et al. CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished
                   apoptosis, and enhanced angiogenesis. Clin Cancer Res 2010;16:3875-86.
   479   480   481   482   483   484   485   486   487   488   489