Page 483 - Read Online
P. 483

Maner et al. J Cancer Metastasis Treat 2020;6:37  I  http://dx.doi.org/10.20517/2394-4722.2020.60                        Page 35 of 40

                   Apoptosis 2008;13:1111-20.
               50.  Qin JZ, Bacon P, Panella J, Sitailo LA, Denning MF, et al. Low-dose UV-radiation sensitizes keratinocytes to TRAIL-induced apoptosis.
                   J Cell Physiol 2004;200:155-66.
               51.  Kim DJ, Kataoka K, Sano S, Connolly K, Kiguchi K, et al. Targeted disruption of Bcl-xL in mouse keratinocytes inhibits both UVB- and
                   chemically induced skin carcinogenesis. Mol Carcinog 2009;48:873-85.
               52.  Obsil T, Ghirlando R, Anderson DE, Hickman AB, Dyda F. Two 14-3-3 binding motifs are required for stable association of Forkhead
                   transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 2003;42:15264-72.
               53.  Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008;27:6245-51.
               54.  Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 2004;5:875-85.
               55.  McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant
                   transformation and drug resistance. Biochim Biophys Acta 2007;1773:1263-84.
               56.  Omran OM, Ata HS. Expression of tumor necrosis factor-related apoptosis-inducing ligand death receptors DR4 and DR5 in human
                   nonmelanoma skin cancer. Am J Dermatopathol 2014;36:710-7.
               57.  Shimizu T, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, et al. The clinical effect of the dual-targeting strategy involving PI3K/
                   AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res 2012;18:2316-25.
               58.  Paul G, Marchelletta RR, McCole DF, Barrett KE. Interferon-γ alters downstream signaling originating from epidermal growth factor
                   receptor in intestinal epithelial cells: functional consequences for ion transport. J Biol Chem 2012;287:2144-55.
               59.  Chaisuparat R, Limpiwatana S, Kongpanitkul S, Yodsanga S, Jham BC. The Akt/mTOR pathway is activated in verrucous carcinoma of
                   the oral cavity. J Oral Pathol Med 2016;45:581-5.
               60.  Kim C, Pasparakis M. Epidermal p65/NF-κB signalling is essential for skin carcinogenesis. EMBO Mol Med 2014;6:970-83.
               61.  Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013;12:86.
               62.  Carpenter RL, Lo HW. STAT3 target genes relevant to human cancers. Cancers (Basel) 2014;6:897-925.
               63.  Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol
                   2009;10:348-55.
               64.  Gordon R. Skin cancer: an overview of epidemiology and risk factors. Semin Oncol Nurs 2013;29:160-9.
               65.  Burton KA, Ashack KA, Khachemoune A. Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin
                   Dermatol 2016;17:491-508.
               66.  Immunotherapy drug cemiplimab approved for advanced squamous cell skin cancer. Available from: https://www.cancer.gov/news-
                   events/cancer-currents-blog/2018/cemiplimab-fda-squamous-cell-carcinoma. [Last accessed on 7 Sep 2020]
               67.  Benjamin CL, Ananthaswamy HN. p53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol 2007;224:241-8.
               68.  Kang D, Choi TH, Han K, Son D, Kim JH, et al. Regulation of K(+) channels may enhance wound healing in the skin. Med Hypotheses
                   2008;71:927-9.
               69.  Liu Q, Yu S, Zhao W, Qin S, Chu Q, et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018;17:53.
               70.  Wenczak BA, Lynch JB, Nanney LB. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-
                   mediated repair. J Clin Invest 1992;90:2392-401.
               71.  Heo JS, Lee MY, Han HJ. Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of Ca2+/protein kinase C
                   and epidermal growth factor receptor as well as Gli1 activation. Stem Cells 2007;25:3069-80.
               72.  Carballo GB, Honorato JR, de Lopes GPF, Spohr TCLdSE. A highlight on Sonic hedgehog pathway. Cell Communication and Signaling
                   2018;16:11.
               73.  Panelos J, Tarantini F, Paglierani M, Di Serio C, Maio V, et al. Photoexposition discriminates Notch 1 expression in human cutaneous
                   squamous cell carcinoma. Mod Pathol 2008;21:316-25.
               74.  Yang L, XL, Brooks YS. Dysregulated estrogen signaling through CYP1B1 contributes to notch deficiency in squamous cell carcinoma.
                   Society of investigative dermatology: youtube presentation; 2020. Available from: https://www.youtube.com/watch?v=nxpbcf1xdca. [Last
                   accessed on 7 Sep 2020]
               75.  Al Labban D, Jo SH, Ostano P, Saglietti C, Bongiovanni M, et al. Notch-effector CSL promotes squamous cell carcinoma by repressing
                   histone demethylase KDM6B. J Clin Invest 2018;128:2581-99.
               76.  Konicke K, López-Luna A, Muñoz-Carrillo JL, Servín-González LS, Flores-de la Torre A, et al. The microRNA landscape of cutaneous
                   squamous cell carcinoma. Drug Discov Today 2018;23:864-70.
               77.  Kollias N, Ruvolo E, Sayre RM. The value of the ratio of UVA to UVB in sunlight. Photochem Photobiol 2011;87:1474-5.
               78.  Mahler V. Skin diseases associated with environmental factors. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz
                   2017;60:605-17.
               79.  Agar N, Young AR. Melanogenesis: a photoprotective response to DNA damage? Mutat Res 2005;571:121-32.
               80.  Hung KF, Sidorova JM, Nghiem P, Kawasumi M. The 6-4 photoproduct is the trigger of UV-induced replication blockage and ATR
                   activation. Proc Natl Acad Sci U S A 2020;117:12806-16.
               81.  Center V-IC. Cell cycle control: overview. Cell Cycle Control. Vanderbilt University; 2016.
               82.  Ra SH, Su A, Li X, Zhou J, Cochran AJ, et al. Keratoacanthoma and squamous cell carcinoma are distinct from a molecular perspective.
                   Mod Pathol 2015;28:799-806.
               83.  Atasoy M, Anadolu-Braise R, Pirim I, Dogan H, Ikbal M. HLA antigen profile differences in patients with SCC (Squamous Cell
                   Carcinoma) in-situ/actinic keratosis and invasive SCC: is there a genetic succeptibility for invasive SCC development? Eurasian J Med
                   2009;41:162-4.
   478   479   480   481   482   483   484   485   486   487   488