Page 662 - Read Online
P. 662

Page 14 of 14                            Tafur et al. J Cancer Metastasis Treat 2018;5:xx  I  http://dx.doi.org/10.20517/2394-4722.2018.102

               22.   Zhang Y, Lin S, Chen Y, Yang F, Liu S. LDH-A promotes epithelial-mesenchymal transition by upregulating ZEB2 in intestinal-type
                   gastric cancer. Onco Targets Ther 2018;11:2363-73.
               23.   Liu C, Wu J, Zhu J, Kuei C, Yu J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor,
                   GPR81. J Biol Chem 2009;284:2811-22.
               24.   Ahmed K, Tunaru S, Tang C, Müller M, Gille A, et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis
                   through GPR81. Cell Metab 2010;11:311-9.
               25.   Lee YJ, Shin KJ, Park SA, Park KS, Park S, et al. G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer
                   through angiogenic factor secretion. Oncotarget 2016;7:70898-911.
               26.   Roland CL, Arumugam T, Deng D, Liu SH, Philip B, et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer
                   Res 2014;74:5301-10.
               27.   Wagner W, Kania KD, Ciszewski WM. Stimulation of lactate receptor (HCAR1) affects cellular DNA repair capacity. DNA Repair
                   (Amst) 2017;52:49-58.
               28.   Wagner W, Ciszewski WM, Kania KD. L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to
                   anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal 2015;13:36.
               29.   Stäubert C, Broom OJ, Nordström A. Hydroxycarboxylic acid receptors are essential for breast cancer cells to control their lipid/fatty
                   acid metabolism. Oncotarget 2015;6:19706-20.
               30.   Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods
                   2007;4:359-65.
               31.   Bi H, Krausz KW, Manna SK, Li F, Johnson CH, et al. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-
                   MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem 2013;405:5279-89.
               32.   Lánczky A, Nagy Á, Bottai G, Munkácsy G, Szabó A, et al. MiRpower: a web-tool to validate survival-associated miRNAs utilizing
                   expression data from 2178 breast cancer patients. Breast Cancer Res Treat 2016;160:439-46.
               33.   Tafur D, Svrcek P, Kondaveeti Y, Mehlmann L, Hoch J, et al. Reprogramming of Lactate Metabolism Associated With Epithelial-
                   Mesenchymal Transition In Human Breast Cancer Cells. J Cancer Metastasis Treat. Forthcoming 2019.
               34.   Park S, Chang CY, Safi R, Liu X, Baldi R, et al. ERRα-regulated lactate metabolism contributes to resistance to targeted therapies in
                   breast cancer. Cell Rep 2016;15:323-35.
               35.   Allegra JC, Korat O, Do HM, Lippman M. The regulation of progesterone receptor by 17 beta estradiol and tamoxifen in the Zr-75-1
                   human breast cancer cell line in defined medium. J Recept Res 1981;2:17-27.
               36.   Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.
               37.   Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016;23:27-47.
               38.   Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, et al. Wnt/snail signaling regulates cytochrome c oxidase and glucose metabolism. Cancer
                   Res 2012;72:3607-17.
               39.   Dong C, Yuan T, Wu Y, Wang Y, Fan TW, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like
                   breast cancer. Cancer Cell 2013;23:316-31.
               40.   Hussien R, Brooks GA. Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast
                   cancer cell lines. Physiol Genomics 2011;43:255-64.
               41.   Baenke F, Dubuis S, Brault C, Weigelt B, Dankworth B, et al. Functional screening identifies MCT4 as a key regulator of breast cancer
                   cell metabolism and survival. J Pathol 2015;237:152-65.
               42.   Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, et al. Monocarboxylate transporter 1 is up-regulated in basal-like breast
                   carcinoma. Histopathology 2010;56:860-7.
               43.   Doyen J, Trastour C, Ettore F, Peyrottes I, Toussant N, et al. Expression of the hypoxia-inducible monocarboxylate transporter MCT4
                   is increased in triple negative breast cancer and correlates independently with clinical outcome. Biochem Biophys Res Commun
                   2014;451:54-61.
               44.   Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, et al. Lactate receptor sites link neurotransmission, neurovascular
                   coupling, and brain energy metabolism. Cereb Cortex 2014;24:2784-95.
               45.   Bozzo L, Puyal J, Chatton JY. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS
                   One 2013;8:e71721.
               46.   Lerch MM, Conwell DL, Mayerle J. The anti-inflammasome effect of lactate and the lactate GPR81-receptor in pancreatic and liver
                   inflammation. Gastroenterology 2014;146:1602-5.
               47.   Madaan A, Nadeau-Vallée M, Rivera JC, Obari D, Hou X, et al. Lactate produced during labor modulates uterine inflammation via
                   GPR81 (HCA1). Am J Obstet Gynecol 2017;216:60.e1-60.e17.
               48.   Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-
                   mediated inflammation via gpr81-mediated suppression of innate immunity. Gastroenterology 2014;146:1763-74.
               49.   Boidot R, Veǵran F, Meulle A, Le Breton A, Dessy C, et al. Regulation of monocarboxylate transporter MCT1 expression by p53
                   mediates inward and outward lactate fluxes in tumors. Cancer Res 2012;72:939-48.
   657   658   659   660   661   662   663   664   665   666   667