Page 661 - Read Online
P. 661

Tafur et al. J Cancer Metastasis Treat 2018;5:xx  I  http://dx.doi.org/10.20517/2394-4722.2018.102                           Page 13 of 14

               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               None.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2019.


               REFERENCES
               1.   Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, et al. Global cancer statistics, 2012. CA a cancer J Clin 2015;65:87-108.
               2.   Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2016;66:7-30.
               3.   Munzone E, Colleoni M. Optimal management of luminal breast cancer: how much endocrine therapy is long enough? Ther Adv Med
                   Oncol 2018;10:175883591877743.
               4.   Nieto MA, Huang RYJ, Jackson RA, Thiery JP. EMT: 2016. Cell 2016;166:21-45.
               5.   Singh M, Yelle N, Venugopal C, Singh SK. EMT: mechanisms and therapeutic implications. Pharmacol Ther 2018;182:80-94.
               6.   Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, et al. Epithelial-mesenchymal transition in breast cancer
                   relates to the basal-like phenotype. Cancer Res 2008;68:989-97.
               7.   Kondaveeti Y, Guttilla Reed IK, White BA. Epithelial-mesenchymal transition induces similar metabolic alterations in two independent
                   breast cancer cell lines. Cancer Lett 2015;364:44-58.
               8.   Guttilla IK, Phoenix KN, Hong X, Tirnauer JS, Claffey KP, et al. Prolonged mammosphere culture of MCF-7 cells induces an EMT and
                   repression of the estrogen receptor by microRNAs. Breast Cancer Res Treat 2012;132:75-85.
               9.   Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int
                   2013;13:89.
               10.   Ziebart T, Walenta S, Kunkel M, Reichert TE, Wagner W, et al. Metabolic and proteomic differentials in head and neck squamous cell
                   carcinomas and normal gingival tissue. J Cancer Res Clin Oncol 2011;137:193-9.
               11.   Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, et al. High lactate levels predict likelihood of metastases , tumor
                   recurrence, and restricted patient survival in human cervical cancers. Cancer Res 2000;60:916-21.
               12.   Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA
                   traps. Sci Transl Med 2016;8:361ra138.
               13.   Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells
                   in mice. J Clin Invest 2008;118:3930-42.
               14.   Kennedy KM, Scarbrough PM, Ribeiro A, Richardson R, Yuan H, et al. Catabolism of exogenous lactate reveals it as a legitimate
                   metabolic substrate in breast cancer. PLoS One 2013;8:e75154.
               15.   Choi SYC, Collins CC, Gout PW, Wang Y. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol
                   2013;230:350-5.
               16.   San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation
                   of the Warburg Effect. Carcinogenesis 2017;38:119-33.
               17.   Sun S, Li H, Chen J, Qian Q. Lactic acid: no longer an inert and end-product of glycolysis. Physiology 2017;32:453-63.
               18.   Halestrap AP. The monocarboxylate transporter family-structure and functional characterization. IUBMB Life 2012;64:1-9.
               19.   Marchiq I, Pouysségur J. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters. J Mol Med (Berl)
                   2016;94:155-71.
               20.   Morais-Santos F, Granja S, Miranda-Gonçalves V, et al. Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget
                   2015;6:19177-89.
               21.   Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, et al. Role of monocarboxylate transporters in human cancers:
                   state of the art. J Bioenerg Biomembr 2012;44:127-39.
   656   657   658   659   660   661   662   663   664   665   666