Page 225 - Read Online
P. 225

Grelet et al. J Cancer Metastasis Treat 2019;5:16  I  http://dx.doi.org/10.20517/2394-4722.2018.85                            Page 9 of 10

                   carcinoma cells within primary mammary tumors. Cancer Res 2004;64:8585-94.
               9.   Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009;10:445-57.
               10.  Polette M, Nawrocki-Raby B, Gilles C, Clavel C, Birembaut P. Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol
                   2004;49:179-86.
               11.  Juncker-Jensen A, Deryugina EI, Rimann I, Zajac E, Kupriyanova TA, et al. Tumor MMP-1 activates endothelial PAR1 to facilitate vascular
                   intravasation and metastatic dissemination. Cancer Res 2013;73:4196-211.
               12.  Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, et al. Epithelial-mesenchymal plasticity and circulating tumor
                   cells: travel companions to metastases. Dev Dyn Off Publ Am Assoc Anat 2018;247:432-50.
               13.  Bourcy M, Suarez-Carmona M, Lambert J, Francart ME, Schroeder H, et al. Tissue factor induced by epithelial-mesenchymal transition
                   triggers a procoagulant state that drives metastasis of circulating tumor cells. Cancer Res 2016;76:4270-82.
               14.  Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V, et al. Circulating tumor cells with stemness and epithelial-
                   to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer Ther
                   2019;18:437-47.
               15.  Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev 2017;31:1827-40.
               16.  Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces
                   chemoresistance in pancreatic cancer. Nature 2015;527:525-30.
               17.  Fischer KR, Durrans A, Lee S, Sheng J, Li F, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes
                   to chemoresistance. Nature 2015;527:472-6.
               18.  Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and
                   promotes metastasis in pancreatic cancer. Nat Cell Biol 2017;19:518-29.
               19.  Aiello NM, Brabletz T, Kang Y, Nieto MA, Weinberg RA, et al. Upholding a role for EMT in pancreatic cancer metastasis. Nature
                   2017;547:E7-8.
               20.  Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, et al. Upholding a role for EMT in breast cancer metastasis. Nature 2017;547:E1-3.
               21.  Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer 2018;18:128-34.
               22.  Saunders LR, McClay DR. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. Dev Camb
                   Engl 2014;141:1503-13.
               23.  Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017;11:755-69.
               24.  Chaudhury A, Chander P, Howe PH. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s
                   multifunctional regulatory roles. RNA 2010;16:1449-62.
               25.  Aasheim HC, Loukianova T, Deggerdal A, Smeland EB. Tissue specific expression and cDNA structure of a human transcript encoding a
                   nucleic acid binding [oligo(dC)] protein related to the pre-mRNA binding protein K. Nucleic Acids Res 1994;22:959-64.
               26.  Leffers H, Dejgaard K, Celis JE. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three
                   K-homologous (KH) domains. Eur J Biochem 1995;230:447-53.
               27.  Dejgaard K, Leffers H. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains. Eur J
                   Biochem 1996;241:425-31.
               28.  Brown AS, Mohanty BK, Howe PH. Identification and characterization of an hnRNP E1 translational silencing motif. Nucleic Acids Res
                   2016;44:5892-907.
               29.  Chkheidze AN, Liebhaber SA. A novel set of nuclear localization signals determine distributions of the alphaCP RNA-binding proteins. Mol
                   Cell Biol 2003;23:8405-15.
               30.  Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and
                   tumour progression. Nat Cell Biol 2017;19:1105-15.
               31.  van der Houven van Oordt W, Diaz-Meco MT, Lozano J, Krainer AR, Moscat J, et al. The MKK(3/6)-p38-signaling cascade alters the
                   subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J Cell Biol 2000;149:307-16.
               32.  Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced.
                   Nat Genet 1995;9:184-90.
               33.  Tripathi V, Sixt KM, Gao S, Xu X, Huang J, et al. Direct regulation of alternative splicing by SMAD3 through PCBP1 is essential to the
                   tumor-promoting role of TGF-β. Mol Cell 2016;64:549-64.
               34.  Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, et al. TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-
                   selective translational induction of Dab2 and ILEI. Nat Cell Biol 2010;12:286-93.
               35.  Hussey GS, Chaudhury A, Dawson AE, Lindner DJ, Knudsen CR, et al. Identification of an mRNP complex regulating tumorigenesis at the
                   translational elongation step. Mol Cell 2011;41:419-31.
               36.  Kim SS, Pandey KK, Choi HS, Kim SY, Law PY, et al. Poly(C) binding protein family is a transcription factor in μ-opioid receptor gene
                   expression. Mol Pharmacol 2005;68:729-36.
               37.  Thakur S, Nakamura T, Calin G, Russo A, Tamburrino JF, et al. Regulation of BRCA1 transcription by specific single-stranded DNA
                   binding factors. Mol Cell Biol 2003;23:3774-87.
               38.  Meng Q, Rayala SK, Gururaj AE, Talukder AH, O'Malley BW, et al. Signaling-dependent and coordinated regulation of transcription,
                   splicing, and translation resides in a single coregulator, PCBP1. Proc Natl Acad Sci U S A 2007;104:5866-71.
               39.  Shi H, Li H, Yuan R, Guan W, Zhang X, et al. PCBP1 depletion promotes tumorigenesis through attenuation of p27Kip1 mRNA stability
                   and translation. J Exp Clin Cancer Res 2018;37:187.
               40.  Ho JJ, Robb GB, Tai SC, Turgeon PJ, Mawji IA, et al. Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1
                   protects against antisense RNA and microRNAs. Mol Cell Biol 2013;33:2029-46.
               41.  Cho SJ, Jung YS, Chen X. Poly (C)-binding protein 1 regulates p63 expression through mRNA stability. PLoS One 2013;8:e71724.
               42.  Jolly MK, Boareto M, Debeb BG, Aceto N, Farach-Carson MC, et al. Inflammatory breast cancer: a model for investigating cluster-based
   220   221   222   223   224   225   226   227   228   229   230