Page 143 - Read Online
P. 143

Wallace et al. J Cancer Metastasis Treat 2019;5:9  I  http://dx.doi.org/10.20517/2394-4722.2019.01                        Page 15 of 18

               51.  Walzer T, Galibert L, Comeau MR, De Smedt T. Plexin C1 engagement on mouse dendritic cells by viral semaphorin A39R induces actin
                   cytoskeleton rearrangement and inhibits integrin-mediated adhesion and chemokine-induced migration. J Immunol 2005;174:51-9.
               52.  Scott GA, McClelland LA, Fricke AF, Fender A. Plexin C1, a receptor for semaphorin 7a, inactivates cofilin and is a potential tumor
                   suppressor for melanoma progression. J Invest Dermatol 2009;129:954-63.
               53.  Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 2007;7:429-40.
               54.  Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol
                   2007;258:1-82.
               55.  Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature
                   2003;424:398-405.
               56.  Scott GA, McClelland LA, Fricke AF. Semaphorin 7a promotes spreading and dendricity in human melanocytes through beta1-integrins. J
                   Invest Dermatol 2008;128:151-61.
               57.  Elder AM, Tamburini BAJ, Crump LS, Black SA, Wessells VM, et al. Semaphorin 7A promotes macrophage-mediated lymphatic
                   remodeling during postpartum mammary gland involution and in breast cancer. Cancer Res 2018;78:6473-85.
               58.  Ma B, Herzog EL, Lee CG, Peng X, Lee CM, et al. Role of chitinase 3-like-1 and semaphorin 7a in pulmonary melanoma metastasis.
                   Cancer Res 2015;75:487-96.
               59.  Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70.
               60.  Ichim G, Tait SW. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 2016;16:539-48.
               61.  Al-Dimassi S, Abou-Antoun T, El-Sibai M. Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol 2014;16:511-6.
               62.  Vachon PH. Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. J Signal Transduct 2011;2011:738137.
               63.  Kim YN, Koo KH, Sung JY, Yun UJ, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol
                   2012;2012:306879.
               64.  Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-
                   independent and -dependent pathways. Development 1996;122:181-93.
               65.  Schere-Levy C, Buggiano V, Quaglino A, Gattelli A, Cirio MC, et al. Leukemia inhibitory factor induces apoptosis of the mammary
                   epithelial cells and participates in mouse mammary gland involution. Exp Cell Res 2003;282:35-47.
               66.  Hughes K, Watson CJ. The multifaceted role of STAT3 in mammary gland involution and breast cancer. Int J Mol Sci 2018;19:E1695.
               67.  Castillo-Lluva S, Hontecillas-Prieto L, Blanco-Gomez A, Del Mar Saez-Freire M, Garcia-Cenador B, et al. A new role of SNAI2 in
                   postlactational involution of the mammary gland links it to luminal breast cancer development. Oncogene 2015;34:4777-90.
               68.  Sakamoto K, Wehde BL, Yoo KH, Kim T, Rajbhandari N, et al. Janus kinase 1 is essential for inflammatory cytokine signaling and
                   mammary gland remodeling. Mol Cell Biol 2016;36:1673-90.
               69.  Sargeant TJ, Lloyd-Lewis B, Resemann HK, Ramos-Montoya A, Skepper J, et al. Stat3 controls cell death during mammary gland
                   involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nature cell biology 2014;16:1057-68.
               70.  Segatto I, Baldassarre G, Belletti B. STAT3 in breast cancer onset and progression: a matter of time and context. Int J Mol Sci
                   2018;19:E2818.
               71.  Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009;9:798-809.
               72.  Akhtar N, Li W, Mironov A, Streuli Charles H. Rac1 controls both the secretory function of the mammary gland and its remodeling for
                   successive gestations. Developmental Cell 2016;38:522-35.
               73.  Watson CJ. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast
                   Cancer Res 2006;8:203.
               74.  Green KA, Lund LR. ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays 2005;27:894-903.
               75.  Hojilla CV, Jackson HW, Khokha R. TIMP3 regulates mammary epithelial apoptosis with immune cell recruitment through differential TNF
                   dependence. PLoS One 2011;6:e26718.
               76.  Hanayama R, Nagata S. Impaired involution of mammary glands in the absence of milk fat globule EGF factor 8. Proc Natl Acad Sci U S A
                   2005;102:16886-91.
               77.  Schorr K, Li M, Bar-Peled U, Lewis A, Heredia A, et al. Gain of Bcl-2 is more potent than bax loss in regulating mammary epithelial cell
                   survival in vivo. Cancer Res 1999;59:2541-5.
               78.  Walton KD, Wagner KU, Rucker EB 3rd, Shillingford JM, Miyoshi K, et al. Conditional deletion of the bcl-x gene from mouse mammary
                   epithelium results in accelerated apoptosis during involution but does not compromise cell function during lactation. Mech Dev
                   2001;109:281-93.
               79.  Schwertfeger KL, Richert MM, Anderson SM. Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol
                   2001;15:867-81.
               80.  Radisky DC, Hartmann LC. Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol
                   Neoplasia 2009;14:181-91.
               81.  Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, et al. Mammary-derived signals activate programmed cell death during the first stage
                   of mammary gland involution. Proc Natl Acad Sci U S A 1997;94:3425-30.
               82.  Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles
                   for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 2004;6:R92-109.
               83.  Fornetti J, Martinson HA, Betts CB, Lyons TR, Jindal S, et al. Mammary gland involution as an immunotherapeutic target for postpartum
                   breast cancer. J Mammary Gland Biol Neoplasia 2014;19:213-28.
               84.  Acerbi I, Cassereau L, Dean I, Shi Q, Au A, et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune
                   cell infiltration. Integr Biol (Camb) 2015;7:1120-34.
               85.  Li F, Huang Q, Chen J, Peng Y, Roop DR, et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue
                   regeneration. Sci Signal 2010;3:ra13.
   138   139   140   141   142   143   144   145   146   147   148