Page 142 - Read Online
P. 142
Page 14 of 18 Wallace et al. J Cancer Metastasis Treat 2019;5:9 I http://dx.doi.org/10.20517/2394-4722.2019.01
the clinical features underlying risk. JAMA Netw Open 2019;2:e186997.
14. Asztalos S, Gann PH, Hayes MK, Nonn L, Beam CA, et al. Gene expression patterns in the human breast after pregnancy. Cancer Prev Res
(Phila) 2010;3:301-11.
15. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, et al. Physiologically activated mammary fibroblasts promote postpartum mammary
cancer. JCI Insight 2017;2:e89206.
16. Lyons TR, Borges VF, Betts CB, Guo Q, Kapoor P, et al. Cyclooxygenase-2-dependent lymphangiogenesis promotes nodal metastasis of
postpartum breast cancer. J Clin Invest 2014;124:3901-12.
17. McCready J, Arendt LM, Rudnick JA, Kuperwasser C. The contribution of dynamic stromal remodeling during mammary development to
breast carcinogenesis. Breast Cancer Res 2010;12:205.
18. Lyons TR, O’Brien J, Borges VF, Conklin MW, Keely PJ, et al. Postpartum mammary gland involution drives progression of ductal
carcinoma in situ through collagen and COX-2. Nat Med 2011;17:1109-15.
19. Martinson HA, Jindal S, Durand-Rougely C, Borges VF, Schedin P. Wound healing-like immune program facilitates postpartum mammary
gland involution and tumor progression. Int J Cancer 2015;136:1803-13.
20. O’Brien J, Lyons T, Monks J, Lucia MS, Wilson RS, et al. Alternatively activated macrophages and collagen remodeling characterize the
postpartum involuting mammary gland across species. Am J Pathol 2010;176:1241-55.
21. O’Brien J, Schedin P. Macrophages in breast cancer: do involution macrophages account for the poor prognosis of pregnancy-associated
breast cancer? J Mammary Gland Biol Neoplasia 2009;14:145-57.
22. Gupta PB, Proia D, Cingoz O, Weremowicz J, Naber SP, et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-
negative cancers. Cancer Res 2007;67:2062-71.
23. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol 2012;1:533-57.
24. Balinsky BI. On the prenatal growth of the mammary gland rudiment in the mouse. J Anat 1950;84:227-35.
25. Monaghan P, Perusinghe NP, Cowen P, Gusterson BA. Peripubertal human breast development. Anat Rec 1990;226:501-8.
26. Oakes SR, Hilton HN, Ormandy CJ. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation
of lobuloalveoli from ductal epithelium. Breast Cancer Res 2006;8:207.
27. Haaksma CJ, Schwartz RJ, Tomasek JJ. Myoepithelial cell contraction and milk ejection are impaired in mammary glands of mice lacking
smooth muscle alpha-actin. Biol Reprod 2011;85:13-21.
28. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012;196:395-406.
29. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 2014;15:1243-53.
30. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 2014;15:771-85.
31. Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression.
Cold Spring Harb Perspect Biol 2011;3:a003228.
32. Keely PJ, Fong AM, Zutter MM, Santoro SA. Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of
antisense alpha 2 integrin mRNA in mammary cells. J Cell Sci 1995;108:595-607.
33. Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM. The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype
including defects of branching morphogenesis and hemostasis. Am J Pathol 2002;161:337-44.
34. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature
2002;415:530-6.
35. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, et al. Collagen density promotes mammary tumor initiation and progression.
BMC medicine 2008;6:11.
36. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 1971;231:232-5.
37. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001;294:1871-5.
38. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000;69:145-82.
39. Cha YI, Solnica-Krezel L, DuBois RN. Fishing for prostanoids: deciphering the developmental functions of cyclooxygenase-derived
prostaglandins. Dev Biol 2006;289:263-72.
40. Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase
is regulated by mRNA splicing. Proc Natl Acad Sci U S A 1991;88:2692-6.
41. Yokoyama C, Takai T, Tanabe T. Primary structure of sheep prostaglandin endoperoxide synthase deduced from cDNA sequence. FEBS Lett
1988;231:347-51.
42. Snipes JA, Kis B, Shelness GS, Hewett JA, Busija DW. Cloning and characterization of cyclooxygenase-1b (putative cyclooxygenase-3) in
rat. J Pharmacol Exp Ther 2005;313:668-76.
43. Adegboyega PA, Ololade O. Immunohistochemical expression of cyclooxygenase-2 in normal kidneys. Appl Immunohistochem Mol
Morphol 2004;12:71-4.
44. Kirschenbaum A, Liotta DR, Yao S, Liu XH, Klausner AP, et al. Immunohistochemical localization of cyclooxygenase-1 and
cyclooxygenase-2 in the human fetal and adult male reproductive tracts. J Clin Endocrinol Metab 2000;85:3436-41.
45. FitzGerald GA. COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2003;2:879-90.
46. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol 2018; doi: 10.1002/
jcp.27411.
47. Yang H, Chen C. Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 2008;14:1443-51.
48. Stasinopoulos I, O’Brien DR, Bhujwalla ZM. Inflammation, but not hypoxia, mediated HIF-1alpha activation depends on COX-2. Cancer
Biol Ther 2009;8:31-5.
49. Black SA, Nelson AC, Gurule NJ, Futscher BW, Lyons TR. Semaphorin 7a exerts pleiotropic effects to promote breast tumor progression.
Oncogene 2016;35:5170-8.
50. Cerny J, Stockinger H, Horejsi V. Noncovalent associations of T lymphocyte surface proteins. Eur J Immunol 1996;26:2335-43.