Page 142 - Read Online
P. 142

Page 14 of 18                       Wallace et al. J Cancer Metastasis Treat 2019;5:9  I  http://dx.doi.org/10.20517/2394-4722.2019.01

                   the clinical features underlying risk. JAMA Netw Open 2019;2:e186997.
               14.  Asztalos S, Gann PH, Hayes MK, Nonn L, Beam CA, et al. Gene expression patterns in the human breast after pregnancy. Cancer Prev Res
                   (Phila) 2010;3:301-11.
               15.  Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, et al. Physiologically activated mammary fibroblasts promote postpartum mammary
                   cancer. JCI Insight 2017;2:e89206.
               16.  Lyons TR, Borges VF, Betts CB, Guo Q, Kapoor P, et al. Cyclooxygenase-2-dependent lymphangiogenesis promotes nodal metastasis of
                   postpartum breast cancer. J Clin Invest 2014;124:3901-12.
               17.  McCready J, Arendt LM, Rudnick JA, Kuperwasser C. The contribution of dynamic stromal remodeling during mammary development to
                   breast carcinogenesis. Breast Cancer Res 2010;12:205.
               18.  Lyons TR, O’Brien J, Borges VF, Conklin MW, Keely PJ, et al. Postpartum mammary gland involution drives progression of ductal
                   carcinoma in situ through collagen and COX-2. Nat Med 2011;17:1109-15.
               19.  Martinson HA, Jindal S, Durand-Rougely C, Borges VF, Schedin P. Wound healing-like immune program facilitates postpartum mammary
                   gland involution and tumor progression. Int J Cancer 2015;136:1803-13.
               20.  O’Brien J, Lyons T, Monks J, Lucia MS, Wilson RS, et al. Alternatively activated macrophages and collagen remodeling characterize the
                   postpartum involuting mammary gland across species. Am J Pathol 2010;176:1241-55.
               21.  O’Brien J, Schedin P. Macrophages in breast cancer: do involution macrophages account for the poor prognosis of pregnancy-associated
                   breast cancer? J Mammary Gland Biol Neoplasia 2009;14:145-57.
               22.  Gupta PB, Proia D, Cingoz O, Weremowicz J, Naber SP, et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-
                   negative cancers. Cancer Res 2007;67:2062-71.
               23.  Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol 2012;1:533-57.
               24.  Balinsky BI. On the prenatal growth of the mammary gland rudiment in the mouse. J Anat 1950;84:227-35.
               25.  Monaghan P, Perusinghe NP, Cowen P, Gusterson BA. Peripubertal human breast development. Anat Rec 1990;226:501-8.
               26.  Oakes SR, Hilton HN, Ormandy CJ. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation
                   of lobuloalveoli from ductal epithelium. Breast Cancer Res 2006;8:207.
               27.  Haaksma CJ, Schwartz RJ, Tomasek JJ. Myoepithelial cell contraction and milk ejection are impaired in mammary glands of mice lacking
                   smooth muscle alpha-actin. Biol Reprod 2011;85:13-21.
               28.  Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012;196:395-406.
               29.  Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 2014;15:1243-53.
               30.  Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 2014;15:771-85.
               31.  Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression.
                   Cold Spring Harb Perspect Biol 2011;3:a003228.
               32.  Keely PJ, Fong AM, Zutter MM, Santoro SA. Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of
                   antisense alpha 2 integrin mRNA in mammary cells. J Cell Sci 1995;108:595-607.
               33.  Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM. The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype
                   including defects of branching morphogenesis and hemostasis. Am J Pathol 2002;161:337-44.
               34.  van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature
                   2002;415:530-6.
               35.  Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, et al. Collagen density promotes mammary tumor initiation and progression.
                   BMC medicine 2008;6:11.
               36.  Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 1971;231:232-5.
               37.  Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001;294:1871-5.
               38.  Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000;69:145-82.
               39.  Cha YI, Solnica-Krezel L, DuBois RN. Fishing for prostanoids: deciphering the developmental functions of cyclooxygenase-derived
                   prostaglandins. Dev Biol 2006;289:263-72.
               40.  Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase
                   is regulated by mRNA splicing. Proc Natl Acad Sci U S A 1991;88:2692-6.
               41.  Yokoyama C, Takai T, Tanabe T. Primary structure of sheep prostaglandin endoperoxide synthase deduced from cDNA sequence. FEBS Lett
                   1988;231:347-51.
               42.  Snipes JA, Kis B, Shelness GS, Hewett JA, Busija DW. Cloning and characterization of cyclooxygenase-1b (putative cyclooxygenase-3) in
                   rat. J Pharmacol Exp Ther 2005;313:668-76.
               43.  Adegboyega PA, Ololade O. Immunohistochemical expression of cyclooxygenase-2 in normal kidneys. Appl Immunohistochem Mol
                   Morphol 2004;12:71-4.
               44.  Kirschenbaum A, Liotta DR, Yao S, Liu XH, Klausner AP, et al. Immunohistochemical localization of cyclooxygenase-1 and
                   cyclooxygenase-2 in the human fetal and adult male reproductive tracts. J Clin Endocrinol Metab 2000;85:3436-41.
               45.  FitzGerald GA. COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2003;2:879-90.
               46.  Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol 2018; doi: 10.1002/
                   jcp.27411.
               47.  Yang H, Chen C. Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 2008;14:1443-51.
               48.  Stasinopoulos I, O’Brien DR, Bhujwalla ZM. Inflammation, but not hypoxia, mediated HIF-1alpha activation depends on COX-2. Cancer
                   Biol Ther 2009;8:31-5.
               49.  Black SA, Nelson AC, Gurule NJ, Futscher BW, Lyons TR. Semaphorin 7a exerts pleiotropic effects to promote breast tumor progression.
                   Oncogene 2016;35:5170-8.
               50.  Cerny J, Stockinger H, Horejsi V. Noncovalent associations of T lymphocyte surface proteins. Eur J Immunol 1996;26:2335-43.
   137   138   139   140   141   142   143   144   145   146   147