Page 38 - Read Online
P. 38
ultrasound. Eur Radiol 2011;21:604-15. nervous system lymphoma. J Neurosurg 2014;120:67-9.
53. Sidhu PS, Choi BI, Nielsen MB. The EFSUMB guidelines on the 64. Koc K, Anik I, Cabuk B, Ceylan S. Fluorescein sodium-guided
non-hepatic clinical applications of contrast enhanced ultrasound surgery in glio- blastoma multiforme: a prospective evaluation. Br J
(CEUS): a new dawn for the escalating use of this ubiquitous Neurosurg 2008;22:99-103.
technique. Ultraschall Med 2012;33:5-7. 65. Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C, Shi C, Liu Y, Teng
54. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen L, Han D, Chen X, Yang G, Wang L, Shen C, Li H. Intraoperative
HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for Fluorescence-Guided Resection of High-Grade Malignant Gliomas
resection of malignant glioma: a randomised controlled multicentre Using 5- Aminolevulinic Acid-Induced Porphyrins: A Systematic
phase III trial. Lancet Oncol 2006;7:392-401.
55. Valdés PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson Review and Meta-Analysis of Prospective Studies. PLoS ONE
TD, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts 2013;8:e63682.
DW. Quantitative fluorescence in intracranial tumor: implications 66. Meza D, Wang D, Wang Y, Borwege S, Sanai N, Liu JT. Comparing
for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg high-resolution microscopy techniques for potential intraoperative
2011;115:11-7. use in guiding low-grade glioma resections. Lasers Surg Med
56. Tsugu A, Ishizaka H, Mizokami Y, Osada T, Baba T, Yoshiyama M, 2015;47289-95.
Nishiyama J, Matsumae M. Impact of combination of 5-Aminolevulinic 67. Tabrizi LB, Mahvash M. Augmented reality-guided neurosurgery:
Acid-induced Fluorescence with Intraoperative Magnetic Resonance accuracy and intraoperative application of an image projection
Imaging-guided Surgery gor Glioma. World Neurosurg 2011;76:120-7. technique. J Neurosurg 2015;123:206-11.
57. Yamada S, Muragaki Y, Maruyama T, Komori T, Okada Y. Role 68. Mahvash M, Besharati Tabrizi L: A novel augmented reality system
of neurochemical navigation with 5-aminolevulinic acid during of image projection for image-guided neurosurgery. Acta Neurochir
intraoperative MRI-guided resection of intracranial malignant (Wien) 2015;155:943-7.
gliomas. Clin Neurol Neurosurg 2015;130:134-9. 69. Roldán-Valadéz E, Ríos C, Cortez-Conradis D, Favila R, Moreno-
58. Della Puppa A, De Pellegrin S, d’Avella E, Gioffrè G, Rossetto M, Jimenez S. Global diffusion tensor imaging derived metrics
Gerardi A, Lombardi G, Manara R, Munari M, Saladini M, Scienza differentiate glioblastoma multiforme vs. normal brains by using
R. 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of discriminant analysis: introduction of a novel whole-brain approach.
high-grade gliomas in eloquent areas assisted by functional mapping.
Our experience and review of the literature. Acta Neurochir (Wien) Radiol Oncol 2014;48:127-36.
2013; 155:965-72; discussion 972. 70. Cortez-Conradis D, Favila R, Isaac-Olive K, Martínez-López M,
59. Schucht P, Beck J, Abu-Isa J, Andereggen L, Murek M, Seidel K, Ríos C, Roldán-Valadéz E. Diagnostic performance of regional DTI-
Stieglitz L, Raabe A. Gross total resection rates in contem- porary derived tensor metrics in glioblastoma multiforme: simultaneous
glioblastoma surgery: results of an institutional protocol combining evaluation of p, q, L, Cl, Cp, Cs, RA, RD, AD, mean diffusivity and
5-aminolevulinic acid intraoperative fluorescence imaging and brain fractional anisotropy. Eur Radiol 2013;23:1112-21.
mapping. Neurosurgery 2012;71:927-35; discussion 935-6. 71. Wang M, Serak J, Burks SS. Dual Intraoperative Visualization
60. Li Y, Rey-Dios R, Roberts DW, Valdés PA, Cohen-Gadol AA. Approach Surgery: A Novel Technique Enhances Intraoperative
Intraoperative fluorescence-guided resection of high-grade gliomas: Glioma Visualization. Neurosurgery 2015;77:24-5.
a comparison of the present techniques and evolution of future 72. Eyüpoglu IY, Hore N, Fan Z, Buslei R, Merkel A, Buchfelder
strategies. World Neurosurgery 2014;82:175-85. M, Savaskan NE. Intraoperative vascular DIVA surgery reveals
61. Roberts DW, Valdés PA, Harris BT, Fontaine KM, Hartov A, Fan angiogenic hotspots in tumor zones of malignant gliomas. Sci Rep
X, Ji S, Lollis SS, Pogue BW, Leblond F, Tosteson TD, Wilson BC, 2015;5:7958.
Paulsen KD. Coregistered fluorescence-enhanced tumor resection 73. Hollon T, Hervey-Jumper SL, Sagher O, Orringer DA. Advances in
of malignant glioma: relationships between delta-aminolevulinic the surgical management of Low-Grade Glioma. Semin Radiat Oncol
acid-induced protoporphyrin IX fluorescence, magnetic resonance
imaging enhancement, and neuropathological parameters. Clinical 2015;25:181-8.
article. J Neurosurg 2011; 114:595-603. 74. Ramakrishna R, Hebb A, Barber J, Rostomily R, Silbergeld D.
62. Miyatake S, Kuroiwa T, Kajimoto Y, Miyashita M, Tanaka H, Tsuji Outcomes in Reoperated Low-Grade Gliomas. Neurosurgery
M. Fluorescence of non-neoplastic, magnetic resonance imaging- 2015;77:175-84; discussion 184.
enhancing tissue by 5-aminolevulinic acid: case report. Neurosurgery 75. Valdés PA, Jacobs V, Harris BT, Wilson BC, Leblond F, Paulsen KD,
2007;61:E1101-3; discussion E1103-4. Roberts DW. Quantitative fluorescence using 5-aminolevulinic acid-
63. Grossman R, Nossek E, Shimony N, Raz M, Ram Z. Intraoperative induced protoporphyrin IX biomarker as a surgical adjunct in low-
5-aminolevulinic acid- induced fluorescence in primary central grade glioma surgery. J Neurosurg 2015;123:771-80.
Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ March 11, 2016 ¦ 79