Page 54 - Read Online
P. 54

Cote et al. J Cancer Metastasis Treat 2022;8:36  https://dx.doi.org/10.20517/2394-4722.2022.41  Page 11 of 11

                    malignant mesothelioma. Sci Rep 2016;6:24578.  DOI  PubMed  PMC
               78.       Lima AR, Santos L, Correia M, et al. Dynamin-related protein 1 at the crossroads of cancer. Genes (Basel) 2018;9:115.  DOI
                    PubMed  PMC
               79.       Qian W, Choi S, Gibson GA, Watkins SC, Bakkenist CJ, Van Houten B. Mitochondrial hyperfusion induced by loss of the fission
                    protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci 2012;125:5745-57.  DOI
                    PubMed  PMC
               80.       Wang J, Mirzapoiazova T, Carol Tan YH, et al. Inhibiting crosstalk between MET signaling and mitochondrial dynamics and
                    morphology: a novel therapeutic approach for lung cancer and mesothelioma. Cancer Biol Ther 2018;19:1023-32.  DOI  PubMed
                    PMC
               81.       Grosso S, Marini A, Gyuraszova K, et al. The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nat Commun
                    2021;12:4920.  DOI  PubMed  PMC
               82.       Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and
                    cardiovascular disease. N Engl J Med 1996;334:1150-5.  DOI  PubMed
               83.       The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med
                    1994;330:1029-35.  DOI  PubMed
               84.       Tai DJ, Jin WS, Wu CS, et al. Changes in intracellular redox status influence multidrug resistance in gastric adenocarcinoma cells.
                    Exp Ther Med 2012;4:291-6.  DOI  PubMed  PMC
               85.       Hwang IT, Chung YM, Kim JJ, et al. Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem Biophys Res
                    Commun 2007;359:304-10.  DOI  PubMed
               86.       Chen Q, Espey MG, Sun AY, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen
                    peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA 2007;104:8749-54.  DOI  PubMed  PMC
               87.       Alexander MS, Wilkes JG, Schroeder SR, et al. Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and
                    enhances tumor radiosensitization in pancreatic cancer. Cancer Res 2018;78:6838-51.  DOI  PubMed  PMC
               88.       Mehdi Z, Petronek MS, Stolwijk JM, et al. Utilization of pharmacological ascorbate to enhance hydrogen peroxide-mediated
                    radiosensitivity in cancer therapy. Int J Mol Sci 2021;22:10880.  DOI  PubMed  PMC
               89.       Beddowes E, Spicer J, Chan PY, et al. Phase 1 dose-escalation study of pegylated arginine deiminase, cisplatin, and pemetrexed in
                    patients with argininosuccinate synthetase 1-deficient thoracic cancers. J Clin Oncol 2017;35:1778-85.  DOI  PubMed  PMC
               90.       Szlosarek PW, Luong P, Phillips MM, et al. Metabolic response to pegylated arginine deiminase in mesothelioma with promoter
                    methylation of argininosuccinate synthetase. J Clin Oncol 2013;31:e111-3.  DOI  PubMed
               91.       Kung HJ, Changou CA, Li CF, Ann DK. Chromatophagy: autophagy goes nuclear and captures broken chromatin during arginine-
                    starvation. Autophagy 2015;11:419-21.  DOI  PubMed  PMC
               92.       Cheng CT, Qi Y, Wang YC, et al. Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction.
                    Commun Biol 2018;1:178.  DOI  PubMed  PMC
               93.       Szlosarek PW, Klabatsa A, Pallaska A, et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural
                    mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res 2006;12:7126-31.  DOI  PubMed
               94.       Kremer JC, Prudner BC, Lange SES, et al. Arginine deprivation inhibits the warburg effect and upregulates glutamine anaplerosis and
                    serine biosynthesis in ASS1-deficient cancers. Cell Rep 2017;18:991-1004.  DOI  PubMed  PMC
               95.       Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone
                    in patients with malignant pleural mesothelioma. J Clin Oncol 2003;21:2636-44.  DOI  PubMed
               96.       Sasada T, Nakamura H, Ueda S, et al. Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to
                    cis-diamminedichloroplatinum (II). Free Radic Biol Med 1999;27:504-14.  DOI  PubMed
               97.       Ishikawa T, Ali-osman F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from
                    leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem
                    1993;268:20116-25.  PubMed
               98.       Arnér ES, Nakamura H, Sasada T, Yodoi J, Holmgren A, Spyrou G. Analysis of the inhibition of mammalian thioredoxin,
                    thioredoxin reductase, and glutaredoxin by cis -diamminedichloroplatinum (II) and its major metabolite, the glutathione-platinum
                    complex. Free Radic Biol Med 2001;31:1170-8.  DOI  PubMed
               99.       Zhang X, Zheng Y, Fried LE, et al. Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic
                    triphenylmethanes. Free Radic Biol Med 2011;50:811-20.  DOI  PubMed  PMC
               100.      Corsello SM, Nagari RT, Spangler RD, et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability
                    profiling. Nat Cancer 2020;1:235-48.  DOI  PubMed  PMC
               101.      Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S. The transcription factor FOXM1 is a cellular target of the natural product
                    thiostrepton. Nat Chem 2011;3:725-31.  DOI  PubMed
               102.      Bhat UG, Halasi M, Gartel AL. FoxM1 is a general target for proteasome inhibitors. PLoS One 2009;4:e6593.  DOI  PubMed  PMC
               103.      Bird KE, Xander C, Murcia S, et al. Thiopeptides Induce Proteasome-Independent Activation of Cellular Mitophagy. ACS Chem Biol
                    2020;15:2164-74.  DOI  PubMed  PMC
   49   50   51   52   53   54   55   56   57   58   59