Page 52 - Read Online
P. 52
Cote et al. J Cancer Metastasis Treat 2022;8:36 https://dx.doi.org/10.20517/2394-4722.2022.41 Page 9 of 11
inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000;275:25130-8. DOI PubMed
16. Kumar A, Vaish M, Karuppagounder SS, et al. HIF1α stabilization in hypoxia is not oxidant-initiated. Elife 2021;10:e72873. DOI
PubMed PMC
17. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013;12:931-47. DOI
PubMed
18. Ogrunc M, Di Micco R, Liontos M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage
response activation. Cell Death Differ 2014;21:998-1012. DOI PubMed PMC
19. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res
Commun 2017;482:426-31. DOI PubMed
20. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655-7. DOI PubMed
21. Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem
2002;277:20336-42. DOI PubMed
22. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of
PTEN. EMBO J 2003;22:5501-10. DOI PubMed PMC
23. Cunniff B, Wozniak AN, Sweeney P, DeCosta K, Heintz NH. Peroxiredoxin 3 levels regulate a mitochondrial redox setpoint in
malignant mesothelioma cells. Redox Biol 2014;3:79-87. DOI PubMed PMC
24. Laoukili J, Stahl M, Medema RH. FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta 2007;1775:92-102. DOI
PubMed
25. Park HJ, Carr JR, Wang Z, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 2009;28:2908-18. DOI
PubMed PMC
26. Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular
antioxidant responses. Science 2011;334:1278-83. DOI PubMed PMC
27. Hitosugi T, Kang S, Vander Heiden MG, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor
growth. Sci Signal 2009;2:ra73. DOI PubMed PMC
28. Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism
and tumour growth. Nature 2008;452:230-3. DOI PubMed
29. Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature
2009;458:780-3. DOI PubMed PMC
30. Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the
DNA consensus sequence required for functional activity. J Biol Chem 1991;266:11632-9. PubMed
31. Meister A. Selective modification of glutathione metabolism. Science 1983;220:472-7. DOI PubMed
32. Mitsuishi Y, Taguchi K, Kawatani Y, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic
reprogramming. Cancer Cell 2012;22:66-79. DOI PubMed
33. Kim YJ, Ahn JY, Liang P, Ip C, Zhang Y, Park YM. Human prx1 gene is a target of Nrf2 and is up-regulated by
hypoxia/reoxygenation: implication to tumor biology. Cancer Res 2007;67:546-54. DOI PubMed
34. Nogueira V, Park Y, Chen CC, et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and
sensitizes cells to oxidative apoptosis. Cancer Cell 2008;14:458-70. DOI PubMed PMC
35. Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer 2009;9:691-700. DOI PubMed
36. Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine
metabolism and reactive oxygen species. Proc Natl Acad Sci USA 2010;107:7461-6. DOI PubMed PMC
37. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008;134:451-60.
DOI PubMed PMC
38. Li T, Kon N, Jiang L, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell
2012;149:1269-83. DOI PubMed PMC
39. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab 2014;2:17. DOI PubMed PMC
40. Chew SH, Toyokuni S. Malignant mesothelioma as an oxidative stress-induced cancer: An update. Free Radic Biol Med
2015;86:166-78. DOI PubMed
41. Kinnula VL, Pietarinen-runtti P, Raivio K, et al. Manganese superoxide dismutase in human pleural mesothelioma cell lines. Free
Radic Biol Med 1996;21:527-32. DOI PubMed
42. Kahlos K, Soini Y, Saily M, et al. Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma.
Int J Cancer 2001;95:198-204. DOI PubMed
43. Janssen YM, Marsh JP, Driscoll KE, Borm PJ, Oberdörster G, Mossman BT. Increased expression of manganese-containing
superoxide dismutase in rat lungs after inhalation of inflammatory and fibrogenic minerals. Free Radic Biol Med 1994;16:315-22.
DOI PubMed
44. Kinnula K, Linnainmaa K, Raivio KO, Kinnula VL. Endogenous antioxidant enzymes and glutathione S-transferase in protection of
mesothelioma cells against hydrogen peroxide and epirubicin toxicity. Br J Cancer 1998;77:1097-102. DOI PubMed PMC
45. Kinnula VL, Lehtonen S, Sormunen R, et al. Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J
Pathol 2002;196:316-23. DOI PubMed
46. Kim H, Lee TH, Park ES, et al. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced