Page 54 - Read Online
P. 54

Page 14 of 17   Balakrishnan et al. J Cancer Metastasis Treat 2022;8:27  https://dx.doi.org/10.20517/2394-4722.2022.33

               26.       Haas L, Obenauf AC. Allies or enemies-the multifaceted role of myeloid cells in the tumor microenvironment. Front Immunol
                    2019;10:2746.  DOI  PubMed  PMC
               27.       Broz ML, Binnewies M, Boldajipour B, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting
                    cells critical for T cell immunity. Cancer Cell 2014;26:638-52.  DOI
                                                      +
               28.       Liu J, Rozeman EA, O’Donnell JS, et al. Batf3  DCs and type I IFN are critical for the efficacy of neoadjuvant cancer
                    immunotherapy. Oncoimmunology 2019;8:e1546068.  DOI  PubMed  PMC
               29.       Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I, Sancho D. Effective cancer immunotherapy by natural mouse
                    conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer 2019;7:100.  DOI  PubMed  PMC
               30.       Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 2019;10:5408.  DOI
                    PubMed  PMC
               31.       Saxena M, Balan S, Roudko V, Bhardwaj N. Towards superior dendritic-cell vaccines for cancer therapy. Nat Biomed Eng
                    2018;2:341-6.  DOI  PubMed  PMC
               32.       Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: emerging roles of DC crosstalk in cancer immunity. Front Immunol
                    2019;10:1014.  DOI  PubMed  PMC
                                                  +                    +
               33.       Brewitz A, Eickhoff S, Dähling S, et al. CD8  T Cells orchestrate pDC-XCR1  dendritic cell spatial and functional cooperativity to
                    optimize priming. Immunity 2017;46:205-19.  DOI  PubMed  PMC
               34.       Conrad C, Gregorio J, Wang YH, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS
                    costimulation of Foxp3(+) T-regulatory cells. Cancer Res 2012;72:5240-9.  DOI  PubMed  PMC
               35.       Aspord C, Leccia MT, Charles J, Plumas J. Melanoma hijacks plasmacytoid dendritic cells to promote its own progression.
                    Oncoimmunology 2014;3:e27402.  DOI  PubMed  PMC
               36.       Burnette BC, Liang H, Lee Y, et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and
                    adaptive immunity. Cancer Res 2011;71:2488-96.  DOI  PubMed  PMC
               37.       Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and
                    chemotherapy-induced immunogenic cell death. Oncoimmunology 2014;3:e28518.  DOI  PubMed  PMC
               38.       Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity 2013;39:211-27.  DOI  PubMed
               39.       Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege
                    and disease progression through PD-L1. J Exp Med 2009;206:1327-37.  DOI  PubMed  PMC
               40.       Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015;523:231-5.
                    DOI  PubMed
               41.       Grazioli P, Felli MP, Screpanti I, Campese AF. The mazy case of Notch and immunoregulatory cells. J Leukoc Biol 2017;102:361-8.
                    DOI  PubMed
               42.       Cheng P, Kumar V, Liu H, et al. Effects of notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Res
                    2014;74:141-52.  DOI  PubMed  PMC
               43.       Lee JM, Seo JH, Kim YJ, Kim YS, Ko HJ, Kang CY. The restoration of myeloid-derived suppressor cells as functional antigen-
                    presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer 2012;131:741-51.  DOI  PubMed
               44.       Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI. Mechanism of all-trans retinoic acid effect on tumor-
                    associated myeloid-derived suppressor cells. Cancer Res 2007;67:11021-8.  DOI  PubMed
               45.       Wu L, Zhang XH. Tumor-associated neutrophils and macrophages-heterogenous but not chaotic. Front Immunol 2020;11:553967.
                    DOI
               46.       Poh AR, Ernst M. Targeting macrophages in cancer: from bench to bedside. Front Oncol 2018;8:49.  DOI  PubMed  PMC
               47.       Saleem SJ, Conrad DH. Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC
                    expansion. Int Immunopharmacol 2011;11:808-15.  DOI  PubMed  PMC
               48.       Wang SH, Lu QY, Guo YH, Song YY, Liu PJ, Wang YC. The blockage of Notch signalling promoted the generation of
                    polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. Eur J Cancer 2016;68:90-105.  DOI  PubMed
               49.       Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015;348:62-8.  DOI
                    PubMed  PMC
               50.       Xu J, Escamilla J, Mok S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of
                    radiotherapy in prostate cancer. Cancer Res 2013;73:2782-94.  DOI  PubMed  PMC
               51.       Bald T, Quast T, Landsberg J, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma.
                    Nature 2014;507:109-13.  DOI  PubMed
               52.       Zhou SL, Zhou ZJ, Hu ZQ, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of
                    hepatocellular carcinoma and resistance to sorafenib. Gastroenterology 2016;150:1646-1658.e17.  DOI  PubMed
               53.       Franklin RA, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages. Science 2014;344:921-5.
                    DOI  PubMed  PMC
               54.       Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015;27:462-72.  DOI  PubMed  PMC
               55.       Cassetta L, Kitamura T. Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune
                    checkpoint inhibitors. Front Cell Dev Biol 2018;6:38.  DOI  PubMed  PMC
               56.       Badawi MA, Abouelfadl DM, El-Sharkawy SL, El-Aal WE, Abbas NF. Tumor-associated macrophage (TAM) and angiogenesis in
                    human colon carcinoma. Open Access Maced J Med Sci 2015;3:209-14.  DOI  PubMed  PMC
   49   50   51   52   53   54   55   56   57   58   59