Page 53 - Read Online
P. 53

Balakrishnan et al. J Cancer Metastasis Treat 2022;8:27  https://dx.doi.org/10.20517/2394-4722.2022.33  Page 13 of 17

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.       Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance.
                    Cell Commun Signal 2020;18:59.  DOI  PubMed  PMC
               2.       National Cancer Institute, Definition of tumor microenvironment - NCI Dictionary of Cancer Terms - National Cancer Institute.
                    Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tumor-microenvironment?redirect=true [Last
                    accessed on 21 July 2022].
               3.       Terry S, Buart S, Chouaib S. Hypoxic stress-induced tumor and immune plasticity, suppression, and impact on tumor heterogeneity.
                    Front Immunol 2017;8:1625.  DOI  PubMed  PMC
               4.       Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: prospects and challenges. Int J Hematol 2017;105:244-56.
                    DOI  PubMed
               5.       Li W, Ng JM, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric
                    cancer. Oncogene 2018;37:4903-20.  DOI  PubMed  PMC
               6.       Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment. Cell Commun Signal
                    2011;9:18.  DOI  PubMed  PMC
               7.       Seidi K, Neubauer HA, Moriggl R, Jahanban-Esfahlan R, Javaheri T. Tumor target amplification: Implications for nano drug delivery
                    systems. J Control Release 2018;275:142-61.  DOI  PubMed
               8.       Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K. Turn back the TIMe: targeting tumor infiltrating myeloid cells to
                    revert cancer progression. Front Immunol 2018;9:1977.  DOI  PubMed  PMC
               9.       Crittenden MR, Savage T, Cottam B, et al. The peripheral myeloid expansion driven by murine cancer progression is reversed by
                    radiation therapy of the tumor. PLoS One 2013;8:e69527.  DOI  PubMed  PMC
               10.       Sengupta N, MacFie TS, MacDonald TT, Pennington D, Silver AR. Cancer immunoediting and “spontaneous” tumor regression.
                    Pathol Res Pract 2010;206:1-8.  DOI  PubMed
               11.  Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004;22:329-60.  DOI  PubMed
               12.       Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat
                    Immunol 2002;3:991-8.  DOI  PubMed
               13.       Mohamed E, Al-Khami AA, Rodriguez PC. The cellular metabolic landscape in the tumor milieu regulates the activity of myeloid
                    infiltrates. Cell Mol Immunol 2018;15:421-7.  DOI  PubMed  PMC
               14.       Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science
                    2011;331:1565-70.  DOI  PubMed
               15.       Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination,
                    equilibrium and escape. Curr Opin Immunol 2014;27:16-25.  DOI  PubMed  PMC
               16.       Zoso A, Mazza EM, Bicciato S, et al. Human fibrocytic myeloid-derived suppressor cells express IDO and promote tolerance via
                    Treg-cell expansion. Eur J Immunol 2014;44:3307-19.  DOI  PubMed
               17.       Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, et al. Tumor-associated neutrophils stimulate T cell responses in early-stage
                    human lung cancer. J Clin Invest 2014;124:5466-80.  DOI  PubMed  PMC
               18.       Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP. Decreased antigen presentation by dendritic cells in patients with
                    breast cancer. Clin Cancer Res 1997;3:483-90.  PubMed
               19.       Haabeth OA, Tveita AA, Fauskanger M, et al. How Do CD4(+) T Cells detect and eliminate tumor cells that either lack or express
                    MHC class II molecules? Front Immunol 2014;5:174.  DOI
               20.       Calmeiro J, Carrascal MA, Tavares AR, et al. Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type
                    1 dendritic cells. Pharmaceutics 2020;12:158.  DOI  PubMed  PMC
               21.       Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol
                    2012;12:253-68.  DOI  PubMed  PMC
               22.       Cheng P, Zhou J, Gabrilovich D. Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunol Rev
                    2010;234:105-19.  DOI  PubMed
               23.       Hossain F, Majumder S, Ucar DA, et al. Notch signaling in myeloid cells as a regulator of tumor immune responses. Front Immunol
                    2018;9:1288.  DOI  PubMed  PMC
               24.       Kirkling ME, Cytlak U, Lau CM, et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell
                    Rep 2018;23:3658-3672.e6.  DOI  PubMed  PMC
               25.  Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and
                    adoptive T cell therapy. Cancer Cell 2017;31:711-723.e4.  DOI  PubMed  PMC
   48   49   50   51   52   53   54   55   56   57   58