Page 21 - Read Online
P. 21
Testa et al. J Cancer Metastasis Treat 2020;6:53 I http://dx.doi.org/10.20517/2394-4722.2020.111 Page 17 of 17
of an angiogenetic response. J Hematol Oncol 2016;9:33.
76. Dias S, Hattori K, Heissig B, et al. Inhibition of both paracrine and autocrine VEGF /VEGF-R2 signaling pathways is essential to induce
long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci U S A 2001;98:10857-62.
77. Zhu Z, Hattori K, Zhang H, et al. Inhibition of human leukemia in an animal model with human antibodies directed against vascular
endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Luekemia 2003;17:604-11.
78. Zahiragic L, Schliemann C, Bieker R, et al. Bevacizumab reduces VEGF expression in patients with relapsed and refractory acute
myeloid leukemia without clinical antileukemic activity. Leukemia 2007;21:1310-2.
79. Fiedler W, Mesters R, Tinnefeld H, et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood
2003;102:2763-7.
80. Fiedler W, Serve H, Dohner H, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid
leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005;105:986-93.
81. Nobrega-Pereeira S, Caiado F, et al. VEGFR2-mediated reprogramming of mitochondrial metabolism regulates the sensitivity of acute
myeloid leukemia to chemotherapy. Cancer Res 2018;78:731-41.
82. Zhao D, Hou H, Zhang XC. Progress in the treatment of solid tumors with apatinib: a systematic review. OncoTargets Ther
2018;11:4137-47.
83. Yu L, Deng MM, Li ZF, Fang ZH, Dai Y, Xu B. Apatinib exhibits cytotoxicity to acute myeloid leukemia cell via targeting VEGFR2-
mediated pro-survival signaling and angiogenesis. Blood 2019;134:51548.
84. Deng MM, Zha J, Zhao HJ, et al. Apatinib exhibits cytotoxicity toward leukemia cells by targeting VEGFR2-nediated prosurvival
signaling and angiogenesis. Exp Cell Res 2020;390:111934.
85. Borthakur G, Kantarjian H, Ravandi F, et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias.
Haematologica 2011;96:62-8.
86. Rollig C, Serve H, Huttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with
newly diagnosed acute myeloid leukemia (SORAML): a multicentre, phase 2, randomized controlled trial. Lancet Oncol 2015;16:1691-9.
87. Sharinen P, Eklund L, Alitalo K. Therapeutic targeting of angiopoietin-TIE pathway. Nat Rev Drug Discov 2017;16:635-51.
88. Jeansson M, Gawlik A, Anderson G, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury.
J Clin Invest 2011;121:2278-89.
89. Daly C, Pasnikowski E, Burova E, et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl
Acad Sci U S A 2006;103:15491-96.
90. Daly C, Eichten A, Castanero C, et al. Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF
inhibition. Cancer Res 2013;73:108-18.
91. Watarai M, Miwa H, Shikami M, et al. Expression of endothelial cell-associated molecules in AML cells. Leukemia 2002;16:112-9.
92. Schliemann C, Bieker R, Padro T, et al. Expression of angiopoietins and their receptor Tie2 in the bone marrow of patients with acute
myeloid leukemia. Haematologica 2006;91:1203-11.
93. Schliemann C, Bieker R, Thoennissen N, et al. Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia.
Leukemia 2007;21:1901-6.
94. Loges S, Heil G, Bruweleit M, et al. Analysis of concerted expression in acute myeloid leukemia: expression of angiopoietin-2 represents
an independent prognostic factor for overall survival. J Clin Oncol 2005;23:1109-17.
95. Riccioni R, Diverio D, Mariani G, et al. Expression of Tie-2 and other receptors for endothelial growth factors in acute myeloid leukemias
is associated with monocytic features of leukemic blasts. Stem Cells 2007;25:1862-71.
96. Lewis CE, De Palma M, Naldini L. Tie-2 expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2.
Cancer Res 2009;67:8429-32.
97. Riccioni R, Pelosi E, Riti V, Castelli G, Lo-Coco F, Testa U. Immunophenotypic features of acute myeloid leukaemia patients exhibiting
high FLT3 expression not associated with mutations. Br J Haematol 2011;153:33-42.
98. Bchegowda L, Morrone K, Winski SL, et al. Pexmetinib: a novel dual inhibitor of Tie2 and p38 MAPK with efficacy in preclinical
models of myelodysplastic syndromes and acute myeloid leukemia. Cancer Res 2016;76:4841-9.
99. Nichol D, Stuhlmann H. EGFL7: a unique angiogenic signaling factor in vascular development and disease. Blood 2012;119:1345-52.
100. Hong G, Kuek V, Shi JX, et al. EGFL7: master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone
homeostasis. J Cell Physiol 2018;233:8526-37.
101. Papaioiannou D, Shen CX, Nicolet D, et al. Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid
leukemia. Proc Natl Acad Sci U S A 2017;114:E4641-7.
102. Chen ZH, Dai YF, Pang YF, et al. High EGFL7 expression may predict poor prognosis in acute myeloid leukemia patients undergoing
allogeneic hematopoietic stem cell transplantation. Cancer Biol Ther 2019;20:1314-8.
103. Bill M, Pathmanathan A, Karunasiri M, et al. EGFL7 antagonizes NOTCH signaling and represents a novel therapeutic target in acute
myeloid leukemia. Clin Cancer Res 2020;26:669-78.