Page 20 - Read Online
P. 20

Page 16 of 17                          Testa et al. J Cancer Metastasis Treat 2020;6:53  I  http://dx.doi.org/10.20517/2394-4722.2020.111

                   Leukemia 2007;21:136-42.
               45.  Winkler IG, Barbier V, Pattabiraman DR, Gonda TJ, Magani JL, Levesque JP. Vascular niche E-Selectin protects acute myeloid leukemia
                   stem cells from chemotherapy. Blood 2014;124:620.
               46.  Winkler IG, Barbier V, Tay MJ, et al. Blocking vascular niche E-selectin dampens AML stem cell regeneration/survival potential in vivo
                   by inhibiting MAPK/ERK and PI3K/AKT signaling pathways. Blood 2019;134:2657.
               47.  Barbier V, Erbani J, Fiveash C, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular
                   niche-mediated chemoresistance. Nast Commun 2020;11:2042.
               48.  Erbani J, Tay J, Barbier V, Levesque JP, Winkler IG. Acute myeloid leukemia chemo-resistance is mediated by E-selectin receptor CD162
                   in bone marrow niches. Front Cell Dev Biol 2020;8:668.
               49.  Godavarthy PS, Kumar R, Herkt SC, et al. The vascular bone marriw niche influences outcome in chronic myeloid leukemia via the
                   E-selectin-SCL/TAL1-CD44 axis. Haematologica 2020;105:136-47.
               50.  Krause DS, Lazarides K, von Adrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing
                   leukemic stem cells. Nat Med 2006;12:1175-80.
               51.  Padrò T, Ruiz S, Bieker R, et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood
                   2000;95:2637-44.
               52.  Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000;95:309-13.
               53.  Kini AR, Peterson LA, Tallman MS, Lingen MW. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial
                   growth factor and inhibition by all-trans retinoic acid. Blood 2001;97:3919-24.
               54.  Padrò T, Bieker R, Ruiz S, et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR2)
                   in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002;16:1302-10.
               55.  Ghannadan M, Wimazal F, Simonitsch I, et al. Immunohistochemical detection of VEGF in the bone marrow of patients with acute
                   myeloid leukemia. Correlation between VEGF expression and the FAB category. Am J Clin Pathol 2003;119:663-71.
               56.  Jothlingam P, Basu D, Dutta TK. Angiogenesis and proliferation index in patients with acute myeloid leukemia: a prospective study. Bone
                   Marrow Res 2014;2014:634874.
               57.  Song YQ, Tan Y, Liu LB, Wang Q, Zhu J, Liu M. Levels of bone marrow microvessel density are crucial for evaluating the status of acute
                   myeloid leukemia. Oncology Lett 2015;10:211-5.
               58.  Kuzu I, Beksac M, Arat M, Celebi H, Elhan H, Erekul S. Bone marrow microvessel density (MVD) in adult acute myeloid leukemia
                   (AML): therapy induced changes and effects on survival. Leuk Lymphoma 2004;45:1185-90.
               59.  Weidenaar AC, ter Elst A, Koopmans-Klein G, et al. High acute myeloid leukemia derived VEGFA levels are associated with a specific
                   vascular morphology in the leukemic bone marrow. Cell Oncol 2011;34:289-96.
               60.  Aguayo A, Kantarjian H, Gidel C, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood
                   2000;96:2240-5.
               61.  Chand R, Chandra H, Chandra S, Verma SK. Role of microvessel density and vascular endothelial growth factor in angiogenesis of
                   hematological malignancies. Bone Marrow Res 2016;5043383.
               62.  Song MZ, Wang HP, Ye QL. Increased circulating vascular endothelial growth factor in acute myeloid leukemia patients: a systematic
                   review and meta-analysis. Syst Rev 2020;9:103.
               63.  Guo BP, Liu Y, Tan XH, Cen H. Prognostic significance of vascular endothelial growth factor expression in adult patients with acute
                   myeloid leukemia: a meta-analysis. Leuk Lymphoma 2013;54:1418-25.
               64.  Aguayo A, Kantarjian HM, Estey EH, et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with
                   acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002;95:1923-30.
               65.  De Bont ES, Fidler V, Meeuwseen T, Scherpen F, Hahlen K, Kmaops WA. Vascular endothelial growth factor secretion is an independent
                   prognostic factor for relapse-free survival in pediatric acute myeloid leukemia patients. Clin Cancer Res 2002;8:2856-61.
               66.  Rabitsch W, Sperr WR, Lechner K, et al. Bone marrow microvessel density and its prognostic significance in AML. Leuk Lymphoma
                   2004;45:1369-73.
               67.  Savic A, Cemericik-Martinovic V, Dovat S, et al. Angiogenesis and survival in patients with myelodysplastic syndrome. Pathol Oncol
                   Res 2012;18:681-90.
               68.  Shahin OA, Ravandi F. Myeloid sarcoma. Curr Opin Hematol 2020;27:88-94.
               69.  Mohammadisl J, Khosravi A, Shahjahani M, Azizidoost S, Saki N. Molecular and cellular aspects of extramedullary manifestations of
                   acute myeloid leukemia. J Cancer Metast Treat 2016;2:44-50.
               70.  Frietschj JJ, Huntstig F, Wittke C, et al. Extra-medullary recurrence of myeloid sarcoma after allogeneic stem cell transplantation: impact
                   of conditioning intensity. Bone Marrow Transplant 2020; in press.
               71.  Piccaluga PP, Paolini S, Navari M, Etebari M, Visani G, Ascani S. Increased angiogenesis seems to correlate with inferior overall
                   survival. Pol J Pathol 2018;69:254-65.
               72.  Hiramatsu A, Miwa H, Shikami M, et al. Disease-specific expression of VEGF and its receptors in AML cells: possible autocrine pathway
                   of VEGF/type1 receptor if VEGF in t(15;17) AML and VEGF/type 2 receptor of VEGF in t(8;21) AML. Leuk Lymphoma 2006;47:89-95.
               73.  Imai N, Shikami M, Miwa H, Suganuma K. T(8;21) acute myeloid leukaemia cells are dependent on vascular endothelial growth factor
                   (VEGF)/VEGF receptor type 2 pathway and phosphorylation of Akt. Brit J Haematol 2006;135:673-82.
               74.  Ter Elst A, Ma B, Scherpen F, et al. Repression of vascular endothelial growth factor expression by the runt-related transcription factor 1
                   in acute myeloid leukemia. Cancer Res 2011;71:2761-71.
               75.  Saulle E, Petronelli A, Pelosi E, et al. PML-RAR alpha induces the downmodulation of HHEX: a kay event responsible for the induction
   15   16   17   18   19   20   21   22   23   24   25