Page 20 - Read Online
P. 20
Page 16 of 17 Testa et al. J Cancer Metastasis Treat 2020;6:53 I http://dx.doi.org/10.20517/2394-4722.2020.111
Leukemia 2007;21:136-42.
45. Winkler IG, Barbier V, Pattabiraman DR, Gonda TJ, Magani JL, Levesque JP. Vascular niche E-Selectin protects acute myeloid leukemia
stem cells from chemotherapy. Blood 2014;124:620.
46. Winkler IG, Barbier V, Tay MJ, et al. Blocking vascular niche E-selectin dampens AML stem cell regeneration/survival potential in vivo
by inhibiting MAPK/ERK and PI3K/AKT signaling pathways. Blood 2019;134:2657.
47. Barbier V, Erbani J, Fiveash C, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular
niche-mediated chemoresistance. Nast Commun 2020;11:2042.
48. Erbani J, Tay J, Barbier V, Levesque JP, Winkler IG. Acute myeloid leukemia chemo-resistance is mediated by E-selectin receptor CD162
in bone marrow niches. Front Cell Dev Biol 2020;8:668.
49. Godavarthy PS, Kumar R, Herkt SC, et al. The vascular bone marriw niche influences outcome in chronic myeloid leukemia via the
E-selectin-SCL/TAL1-CD44 axis. Haematologica 2020;105:136-47.
50. Krause DS, Lazarides K, von Adrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing
leukemic stem cells. Nat Med 2006;12:1175-80.
51. Padrò T, Ruiz S, Bieker R, et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood
2000;95:2637-44.
52. Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000;95:309-13.
53. Kini AR, Peterson LA, Tallman MS, Lingen MW. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial
growth factor and inhibition by all-trans retinoic acid. Blood 2001;97:3919-24.
54. Padrò T, Bieker R, Ruiz S, et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR2)
in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002;16:1302-10.
55. Ghannadan M, Wimazal F, Simonitsch I, et al. Immunohistochemical detection of VEGF in the bone marrow of patients with acute
myeloid leukemia. Correlation between VEGF expression and the FAB category. Am J Clin Pathol 2003;119:663-71.
56. Jothlingam P, Basu D, Dutta TK. Angiogenesis and proliferation index in patients with acute myeloid leukemia: a prospective study. Bone
Marrow Res 2014;2014:634874.
57. Song YQ, Tan Y, Liu LB, Wang Q, Zhu J, Liu M. Levels of bone marrow microvessel density are crucial for evaluating the status of acute
myeloid leukemia. Oncology Lett 2015;10:211-5.
58. Kuzu I, Beksac M, Arat M, Celebi H, Elhan H, Erekul S. Bone marrow microvessel density (MVD) in adult acute myeloid leukemia
(AML): therapy induced changes and effects on survival. Leuk Lymphoma 2004;45:1185-90.
59. Weidenaar AC, ter Elst A, Koopmans-Klein G, et al. High acute myeloid leukemia derived VEGFA levels are associated with a specific
vascular morphology in the leukemic bone marrow. Cell Oncol 2011;34:289-96.
60. Aguayo A, Kantarjian H, Gidel C, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood
2000;96:2240-5.
61. Chand R, Chandra H, Chandra S, Verma SK. Role of microvessel density and vascular endothelial growth factor in angiogenesis of
hematological malignancies. Bone Marrow Res 2016;5043383.
62. Song MZ, Wang HP, Ye QL. Increased circulating vascular endothelial growth factor in acute myeloid leukemia patients: a systematic
review and meta-analysis. Syst Rev 2020;9:103.
63. Guo BP, Liu Y, Tan XH, Cen H. Prognostic significance of vascular endothelial growth factor expression in adult patients with acute
myeloid leukemia: a meta-analysis. Leuk Lymphoma 2013;54:1418-25.
64. Aguayo A, Kantarjian HM, Estey EH, et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with
acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002;95:1923-30.
65. De Bont ES, Fidler V, Meeuwseen T, Scherpen F, Hahlen K, Kmaops WA. Vascular endothelial growth factor secretion is an independent
prognostic factor for relapse-free survival in pediatric acute myeloid leukemia patients. Clin Cancer Res 2002;8:2856-61.
66. Rabitsch W, Sperr WR, Lechner K, et al. Bone marrow microvessel density and its prognostic significance in AML. Leuk Lymphoma
2004;45:1369-73.
67. Savic A, Cemericik-Martinovic V, Dovat S, et al. Angiogenesis and survival in patients with myelodysplastic syndrome. Pathol Oncol
Res 2012;18:681-90.
68. Shahin OA, Ravandi F. Myeloid sarcoma. Curr Opin Hematol 2020;27:88-94.
69. Mohammadisl J, Khosravi A, Shahjahani M, Azizidoost S, Saki N. Molecular and cellular aspects of extramedullary manifestations of
acute myeloid leukemia. J Cancer Metast Treat 2016;2:44-50.
70. Frietschj JJ, Huntstig F, Wittke C, et al. Extra-medullary recurrence of myeloid sarcoma after allogeneic stem cell transplantation: impact
of conditioning intensity. Bone Marrow Transplant 2020; in press.
71. Piccaluga PP, Paolini S, Navari M, Etebari M, Visani G, Ascani S. Increased angiogenesis seems to correlate with inferior overall
survival. Pol J Pathol 2018;69:254-65.
72. Hiramatsu A, Miwa H, Shikami M, et al. Disease-specific expression of VEGF and its receptors in AML cells: possible autocrine pathway
of VEGF/type1 receptor if VEGF in t(15;17) AML and VEGF/type 2 receptor of VEGF in t(8;21) AML. Leuk Lymphoma 2006;47:89-95.
73. Imai N, Shikami M, Miwa H, Suganuma K. T(8;21) acute myeloid leukaemia cells are dependent on vascular endothelial growth factor
(VEGF)/VEGF receptor type 2 pathway and phosphorylation of Akt. Brit J Haematol 2006;135:673-82.
74. Ter Elst A, Ma B, Scherpen F, et al. Repression of vascular endothelial growth factor expression by the runt-related transcription factor 1
in acute myeloid leukemia. Cancer Res 2011;71:2761-71.
75. Saulle E, Petronelli A, Pelosi E, et al. PML-RAR alpha induces the downmodulation of HHEX: a kay event responsible for the induction