Page 112 - Read Online
P. 112

Davidson et al. J Cancer Metastasis Treat 2021;7:45  https://dx.doi.org/10.20517/2394-4722.2021.77  Page 15 of 19

               10.       Jayarangaiah A, Sidhu G, Brown J, et al. Therapeutic options for advanced thyroid cancer. Int J Clin Endocrinol Metab 2019;5:26-34.
                    DOI  PubMed  PMC
               11.       Pereira M, Williams VL, Hallanger Johnson J, Valderrabano P. Thyroid cancer incidence trends in the United States: association with
                    changes in professional guideline recommendations. Thyroid 2020;30:1132-40.  DOI  PubMed
               12.       Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers.
                    Leukemia 2021;35:1539-51.  DOI  PubMed  PMC
               13.       Ferreira LM, Hebrant A, Dumont JE. Metabolic reprogramming of the tumor. Oncogene 2012;31:3999-4011.  DOI  PubMed
               14.       DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016;2:e1600200.  DOI  PubMed  PMC
               15.       Nelson DL, Lehninger AL, Cox MM. Lehninger principles of biochemistry. London: Macmillan; 2008.
               16.       Haber RS, Weiser KR, Pritsker A, Reder I, Burstein DE. GLUT1 glucose transporter expression in benign and malignant thyroid
                    nodules. Thyroid 1997;7:363-7.  DOI  PubMed
               17.       Jóźwiak P, Krześlak A, Bryś M, Lipińska A. Glucose-dependent glucose transporter 1 expression and its impact on viability of
                    thyroid cancer cells. Oncol Rep 2015;33:913-20.  DOI  PubMed
               18.       Coelho RG, Fortunato RS, Carvalho DP. Metabolic reprogramming in thyroid carcinoma. Front Oncol 2018;8:82.  DOI  PubMed
                    PMC
               19.       Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell
                    Commun Signal 2020;18:83.  DOI  PubMed  PMC
               20.       Suh HY, Choi H, Paeng JC, Cheon GJ, Chung JK, Kang KW. Comprehensive gene expression analysis for exploring the association
                    between glucose metabolism and differentiation of thyroid cancer. BMC Cancer 2019;19:1260.  DOI  PubMed  PMC
               21.       Ciampi R, Vivaldi A, Romei C, et al. Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma
                    cell lines and primary tumors. Mol Cell Endocrinol 2008;291:57-62.  DOI  PubMed
               22.       Nomura M, Takahashi T, Nagata N, et al. Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-
                    G2/PA6 adipose cells. Biol Pharm Bull 2008;31:1403-9.  DOI  PubMed
               23.       Maurya AK, Vinayak M. PI-103 and quercetin attenuate PI3K-AKT signaling pathway in T-cell lymphoma exposed to hydrogen
                    peroxide. PLoS One 2016;11:e0160686.  DOI  PubMed  PMC
               24.       Hamilton KE, Rekman JF, Gunnink LK, et al. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1.
                    Biochimie 2018;151:107-14.  DOI  PubMed  PMC
               25.       Mutlu Altundağ E, Kasacı T, Yılmaz AM, et al. Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J
                    Thyroid Res 2016;2016:9843675.  DOI  PubMed  PMC
               26.       Ruan M, Liu M, Dong Q, Chen L. Iodide- and glucose-handling gene expression regulated by sorafenib or cabozantinib in papillary
                    thyroid cancer. J Clin Endocrinol Metab 2015;100:1771-9.  DOI  PubMed
               27.       Reckzeh ES, Karageorgis G, Schwalfenberg M, et al. Inhibition of glucose transporters and glutaminase synergistically impairs tumor
                    cell growth. Cell Chem Biol 2019;26:1214-1228.e25.  DOI  PubMed
               28.       Nahm JH, Kim HM, Koo JS. Glycolysis-related protein expression in thyroid cancer. Tumour Biol 2017;39:1010428317695922.
                    DOI  PubMed
               29.       Sandulache VC, Skinner HD, Wang Y, et al. Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and
                    improves response to conventional chemotherapy and radiation. Mol Cancer Ther 2012;11:1373-80.  DOI  PubMed  PMC
               30.       Wang SY, Wei YH, Shieh DB, et al. 2-Deoxy-d-Glucose can complement doxorubicin and sorafenib to suppress the growth of
                    papillary thyroid carcinoma cells. PLoS One 2015;10:e0130959.  DOI  PubMed  PMC
               31.       Bikas A, Jensen K, Patel A, et al. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin. Endocr Relat Cancer
                    2015;22:919-32.  DOI  PubMed
               32.       Dima M, Miller KA, Antico-Arciuch VG, Di Cristofano A. Establishment and characterization of cell lines from a novel mouse
                    model of poorly differentiated thyroid carcinoma: powerful tools for basic and preclinical research. Thyroid 2011;21:1001-7.  DOI
                    PubMed  PMC
               33.       O'Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nat Rev Immunol
                    2019;19:324-35.  DOI  PubMed
               34.       Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat
                    Rev Drug Discov 2019;18:669-88.  DOI  PubMed
               35.       . King, M. Integrative medical biochemistry: examination and board review. McGraw-Hill; 2014.
               36.       Kumagai S, Narasaki R, Hasumi K. Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. Biochem
                    Biophys Res Commun 2008;365:362-8.  DOI  PubMed
               37.       Su X, Shen Z, Yang Q, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT
                    pathways via distinct mechanisms. Theranostics 2019;9:4461-73.  DOI  PubMed  PMC
               38.       Chen M, Shen M, Li Y, et al. GC-MS-based metabolomic analysis of human papillary thyroid carcinoma tissue. Int J Mol Med
                    2015;36:1607-14.  DOI  PubMed
               39.       Yu W, Yang Z, Huang R, Min Z, Ye M. SIRT6 promotes the Warburg effect of papillary thyroid cancer cell BCPAP through reactive
                    oxygen species. Onco Targets Ther 2019;12:2861-8.  DOI  PubMed  PMC
               40.       Vizin T, Kos J. Gamma-enolase: a well-known tumour marker, with a less-known role in cancer. Radiol Oncol 2015;49:217-26.  DOI
                    PubMed  PMC
               41.       Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol
                    2011;43:969-80.  DOI  PubMed
   107   108   109   110   111   112   113   114   115   116   117