Page 112 - Read Online
P. 112
Davidson et al. J Cancer Metastasis Treat 2021;7:45 https://dx.doi.org/10.20517/2394-4722.2021.77 Page 15 of 19
10. Jayarangaiah A, Sidhu G, Brown J, et al. Therapeutic options for advanced thyroid cancer. Int J Clin Endocrinol Metab 2019;5:26-34.
DOI PubMed PMC
11. Pereira M, Williams VL, Hallanger Johnson J, Valderrabano P. Thyroid cancer incidence trends in the United States: association with
changes in professional guideline recommendations. Thyroid 2020;30:1132-40. DOI PubMed
12. Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers.
Leukemia 2021;35:1539-51. DOI PubMed PMC
13. Ferreira LM, Hebrant A, Dumont JE. Metabolic reprogramming of the tumor. Oncogene 2012;31:3999-4011. DOI PubMed
14. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016;2:e1600200. DOI PubMed PMC
15. Nelson DL, Lehninger AL, Cox MM. Lehninger principles of biochemistry. London: Macmillan; 2008.
16. Haber RS, Weiser KR, Pritsker A, Reder I, Burstein DE. GLUT1 glucose transporter expression in benign and malignant thyroid
nodules. Thyroid 1997;7:363-7. DOI PubMed
17. Jóźwiak P, Krześlak A, Bryś M, Lipińska A. Glucose-dependent glucose transporter 1 expression and its impact on viability of
thyroid cancer cells. Oncol Rep 2015;33:913-20. DOI PubMed
18. Coelho RG, Fortunato RS, Carvalho DP. Metabolic reprogramming in thyroid carcinoma. Front Oncol 2018;8:82. DOI PubMed
PMC
19. Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell
Commun Signal 2020;18:83. DOI PubMed PMC
20. Suh HY, Choi H, Paeng JC, Cheon GJ, Chung JK, Kang KW. Comprehensive gene expression analysis for exploring the association
between glucose metabolism and differentiation of thyroid cancer. BMC Cancer 2019;19:1260. DOI PubMed PMC
21. Ciampi R, Vivaldi A, Romei C, et al. Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma
cell lines and primary tumors. Mol Cell Endocrinol 2008;291:57-62. DOI PubMed
22. Nomura M, Takahashi T, Nagata N, et al. Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-
G2/PA6 adipose cells. Biol Pharm Bull 2008;31:1403-9. DOI PubMed
23. Maurya AK, Vinayak M. PI-103 and quercetin attenuate PI3K-AKT signaling pathway in T-cell lymphoma exposed to hydrogen
peroxide. PLoS One 2016;11:e0160686. DOI PubMed PMC
24. Hamilton KE, Rekman JF, Gunnink LK, et al. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1.
Biochimie 2018;151:107-14. DOI PubMed PMC
25. Mutlu Altundağ E, Kasacı T, Yılmaz AM, et al. Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J
Thyroid Res 2016;2016:9843675. DOI PubMed PMC
26. Ruan M, Liu M, Dong Q, Chen L. Iodide- and glucose-handling gene expression regulated by sorafenib or cabozantinib in papillary
thyroid cancer. J Clin Endocrinol Metab 2015;100:1771-9. DOI PubMed
27. Reckzeh ES, Karageorgis G, Schwalfenberg M, et al. Inhibition of glucose transporters and glutaminase synergistically impairs tumor
cell growth. Cell Chem Biol 2019;26:1214-1228.e25. DOI PubMed
28. Nahm JH, Kim HM, Koo JS. Glycolysis-related protein expression in thyroid cancer. Tumour Biol 2017;39:1010428317695922.
DOI PubMed
29. Sandulache VC, Skinner HD, Wang Y, et al. Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and
improves response to conventional chemotherapy and radiation. Mol Cancer Ther 2012;11:1373-80. DOI PubMed PMC
30. Wang SY, Wei YH, Shieh DB, et al. 2-Deoxy-d-Glucose can complement doxorubicin and sorafenib to suppress the growth of
papillary thyroid carcinoma cells. PLoS One 2015;10:e0130959. DOI PubMed PMC
31. Bikas A, Jensen K, Patel A, et al. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin. Endocr Relat Cancer
2015;22:919-32. DOI PubMed
32. Dima M, Miller KA, Antico-Arciuch VG, Di Cristofano A. Establishment and characterization of cell lines from a novel mouse
model of poorly differentiated thyroid carcinoma: powerful tools for basic and preclinical research. Thyroid 2011;21:1001-7. DOI
PubMed PMC
33. O'Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nat Rev Immunol
2019;19:324-35. DOI PubMed
34. Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat
Rev Drug Discov 2019;18:669-88. DOI PubMed
35. . King, M. Integrative medical biochemistry: examination and board review. McGraw-Hill; 2014.
36. Kumagai S, Narasaki R, Hasumi K. Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. Biochem
Biophys Res Commun 2008;365:362-8. DOI PubMed
37. Su X, Shen Z, Yang Q, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT
pathways via distinct mechanisms. Theranostics 2019;9:4461-73. DOI PubMed PMC
38. Chen M, Shen M, Li Y, et al. GC-MS-based metabolomic analysis of human papillary thyroid carcinoma tissue. Int J Mol Med
2015;36:1607-14. DOI PubMed
39. Yu W, Yang Z, Huang R, Min Z, Ye M. SIRT6 promotes the Warburg effect of papillary thyroid cancer cell BCPAP through reactive
oxygen species. Onco Targets Ther 2019;12:2861-8. DOI PubMed PMC
40. Vizin T, Kos J. Gamma-enolase: a well-known tumour marker, with a less-known role in cancer. Radiol Oncol 2015;49:217-26. DOI
PubMed PMC
41. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol
2011;43:969-80. DOI PubMed