Page 114 - Read Online
P. 114
Davidson et al. J Cancer Metastasis Treat 2021;7:45 https://dx.doi.org/10.20517/2394-4722.2021.77 Page 17 of 19
73. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci 2014;39:347-54. DOI PubMed PMC
74. Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell 2014;5:592-602. DOI PubMed PMC
75. Liu CL, Hsu YC, Lee JJ, et al. Targeting the pentose phosphate pathway increases reactive oxygen species and induces apoptosis in
thyroid cancer cells. Mol Cell Endocrinol 2020;499:110595. DOI PubMed
76. Ma L, Cheng Q. Inhibiting 6-phosphogluconate dehydrogenase reverses doxorubicin resistance in anaplastic thyroid cancer via
inhibiting NADPH-dependent metabolic reprogramming. Biochem Biophys Res Commun 2018;498:912-7. DOI PubMed
77. Giusti L, Iacconi P, Ciregia F, et al. Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. J
Proteome Res 2008;7:4079-88. DOI PubMed
78. Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochem Soc Trans 2016;44:1499-505. DOI PubMed PMC
79. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to
cancer progression. Int J Radiat Biol 2019;95:912-9. DOI PubMed
80. Mishra D, Banerjee D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment.
Cancers (Basel) 2019;11:750. DOI PubMed PMC
81. Schell JC, Olson KA, Jiang L, et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon
cancer cell growth. Mol Cell 2014;56:400-13. DOI PubMed PMC
82. Liberti MV, Locasale JW. The warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016;41:211-8. DOI PubMed
PMC
83. Lao-On U, Attwood PV, Jitrapakdee S. Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection. J
Mol Med (Berl) 2018;96:237-47. DOI PubMed
84. Vincent EE, Sergushichev A, Griss T, et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and
enables glucose-independent tumor growth. Mol Cell 2015;60:195-207. DOI PubMed
85. Liu S, Zhang D, Chen L, Gao S, Huang X. Long non-coding RNA BRM promotes proliferation and invasion of papillary thyroid
carcinoma by regulating the microRNA-331-3p/SLC25A1 axis. Oncol Lett 2020;19:3071-8. DOI PubMed PMC
86. Losman JA, Kaelin WG Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev
2013;27:836-52. DOI PubMed PMC
87. Reiter-Brennan C, Semmler L, Klein A. The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas. Contemp Oncol (Pozn)
2018;22:215-22. DOI PubMed PMC
88. Ježek P. 2-hydroxyglutarate in cancer cells. Antioxid Redox Signal 2020;33:903-26. DOI PubMed PMC
89. Murugan AK, Bojdani E, Xing M. Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in
thyroid cancer. Biochem Biophys Res Commun 2010;393:555-9. DOI PubMed PMC
90. Hemerly JP, Bastos AU, Cerutti JM. Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur J
Endocrinol 2010;163:747-55. DOI PubMed
91. Rakheja D, Boriack RL, Mitui M, Khokhar S, Holt SA, Kapur P. Papillary thyroid carcinoma shows elevated levels of 2-
hydroxyglutarate. Tumour Biol 2011;32:325-33. DOI PubMed
92. Laurenti G, Tennant DA. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players
for one phenotype in cancer? Biochem Soc Trans 2016;44:1111-6. DOI PubMed
93. Dalla Pozza E, Dando I, Pacchiana R, et al. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev
Biol 2020;98:4-14. DOI PubMed
94. Ni Y, Seballos S, Ganapathi S, et al. Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer.
Endocr Relat Cancer 2015;22:121-30. DOI PubMed PMC
95. Ashtekar A, Huk D, Magner A, et al. DOI PubMed PMC
96. Dhillon S. Ivosidenib: First global approval. Drugs 2018;78:1509-16. DOI PubMed PMC
97. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab 2013;18:153-61.
DOI PubMed PMC
98. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013;13:227-32.
DOI PubMed PMC
99. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci
2016;73:377-92. DOI PubMed
100. von Roemeling CA, Marlow LA, Pinkerton AB, et al. Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl
CoA desaturase 1 as a novel therapeutic target. J Clin Endocrinol Metab 2015;100:E697-709. DOI PubMed PMC
101. Roemeling CA, Copland JA. Targeting lipid metabolism for the treatment of anaplastic thyroid carcinoma. Expert Opin Ther Targets
2016;20:159-66. DOI PubMed PMC
102. Kim H, Butt M, Brose M. Acetyl coa carboxylase: a potential therapeutic target in thyroid cancer. Cancer Res 2008;68:2370.
103. Li EQ, Zhao W, Zhang C, et al. Synthesis and anti-cancer activity of ND-646 and its derivatives as acetyl-CoA carboxylase 1
inhibitors. Eur J Pharm Sci 2019;137:105010. DOI PubMed
104. Wang R, Cheng Y, Su D, et al. Cpt1c regulated by AMPK promotes papillary thyroid carcinomas cells survival under metabolic
stress conditions. J Cancer 2017;8:3675-81. DOI PubMed PMC
105. Giordano TJ, Au AY, Kuick R, et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid
follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res 2006;12:1983-93. DOI PubMed
106. Parker CG, Kuttruff CA, Galmozzi A, et al. Chemical proteomics identifies SLC25A20 as a functional target of the ingenol class of
actinic keratosis drugs. ACS Cent Sci 2017;3:1276-85. DOI PubMed PMC