Page 80 - Read Online
P. 80
Page 18 of 19 Maurizi et al. J Cancer Metastasis Treat 2021;7:35 https://dx.doi.org/10.20517/2394-4722.2021.74
Med 2015;21:1262-71. DOI PubMed PMC
109. Filvaroff E, Erlebacher A, Ye J, Gitelman SE, Lotz J, et al. Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased
bone remodeling and increased trabecular bone mass. Development 1999;126:4267-79. PubMed
110. Buijs JT, Stayrook KR, Guise TA. The role of TGF-β in bone metastasis: novel therapeutic perspectives. Bonekey Rep 2012;1:96.
DOI PubMed PMC
111. Dadwal UC, Merkel AR, Page JM, Kwakwa KA, Kessler M, Rhoades JA. 3d bone morphology alters gene expression, motility, and
drug responses in bone metastatic tumor cells. Int J Mol Sci 2020;21:6913. DOI PubMed PMC
112. Rettig MP, Ansstas G, DiPersio JF. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4.
Leukemia 2012;26:34-53. DOI PubMed PMC
113. Chu K, Cheng CJ, Ye X, et al. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res 2008;6:1259-
67. DOI PubMed PMC
114. Mishra A, Shiozawa Y, Pienta KJ, Taichman RS. Homing of cancer cells to the bone. Cancer Microenviron 2011;4:221-35. DOI
PubMed PMC
115. Cicero A, Stahl PD, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol
2015;35:69-77. DOI PubMed
116. Marcoux G, Duchez AC, Cloutier N, Provost P, Nigrovic PA, Boilard E. Revealing the diversity of extracellular vesicles using high-
dimensional flow cytometry analyses. Sci Rep 2016;6:35928. DOI PubMed PMC
117. Taverna S, Giusti I, D'Ascenzo S, Pizzorno L, Dolo V. Breast cancer derived extracellular vesicles in bone metastasis induction and
their clinical implications as biomarkers. Int J Mol Sci 2020;21:3573. DOI PubMed PMC
118. Witwer KW, Théry C. Extracellular vesicles or exosomes? J Extracell Vesicles 2019;8:1648167. DOI PubMed PMC
119. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position
statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles
2018;7:1535750. DOI PubMed PMC
120. Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 2016;428:688-
92. DOI PubMed PMC
121. Hashimoto K, Ochi H, Sunamura S, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic
microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci U S A 2018;115:2204-9. DOI PubMed PMC
122. Ye Y, Li SL, Ma YY, et al. Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate
cancer. Oncotarget 2017;8:94834-49. DOI PubMed PMC
123. Green TM, Alpaugh ML, Barsky SH, Rappa G, Lorico A. Breast cancer-derived extracellular vesicles: characterization and
contribution to the metastatic phenotype. Biomed Res Int 2015;2015:634865. DOI PubMed PMC
124. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015;527:329-35.
DOI PubMed PMC
125. Ji Q, Zhou L, Sui H, et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth
through fibroblast-niche formation. Nat Commun 2020;11:1211. DOI PubMed PMC
126. Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell
Biol 2015;17:816-26. DOI PubMed PMC
127. Itoh T, Ito Y, Ohtsuki Y, et al. Microvesicles released from hormone-refractory prostate cancer cells facilitate mouse pre-osteoblast
differentiation. J Mol Histol 2012;43:509-15. DOI PubMed PMC
128. Borel M, Lollo G, Magne D, Buchet R, Brizuela L, Mebarek S. Prostate cancer-derived exosomes promote osteoblast differentiation
and activity through phospholipase D2. Biochim Biophys Acta Mol Basis Dis 2020;1866:165919. DOI PubMed
129. Millimaggi D, Festuccia C, Angelucci A, D’Ascenzo S, Rucci N, et al. Osteoblast-conditioned media stimulate membrane vesicle
shedding in prostate cancer cells. Int J Oncol 2006;28:909-14. PubMed
130. Probert C, Dottorini T, Speakman A, et al. Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a
potential mechanism of metastasis. Oncogene 2019;38:1751-63. DOI PubMed PMC
131. Au Yeung CL, Co NN, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer
cells through targeting APAF1. Nat Commun 2016;7:11150. DOI PubMed PMC
132. Huang W, Kang XL, Cen S, Wang Y, Chen X. High-level expression of microRNA-21 in peripheral blood mononuclear cells is a
diagnostic and prognostic marker in prostate cancer. Genet Test Mol Biomarkers 2015;19:469-75. DOI PubMed
133. Rodríguez M, Bajo-Santos C, Hessvik NP, et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep
sequencing analysis of urinary exosomes. Mol Cancer 2017;16:156. DOI PubMed PMC
134. Yuan X, Qian N, Ling S, et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of
tumor cells. Theranostics 2021;11:1429-45. DOI PubMed PMC
135. Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood 2011;117:3648-57. DOI PubMed
PMC
136. Raimondi L, De Luca A, Amodio N, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation.
Oncotarget 2015;6:13772-89. DOI PubMed PMC
137. Raimondo S, Saieva L, Vicario E, et al. Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the
epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol 2019;12:2. DOI
PubMed PMC
138. Taverna S, Pucci M, Giallombardo M, et al. Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through