Page 78 - Read Online
P. 78
Page 16 of 19 Maurizi et al. J Cancer Metastasis Treat 2021;7:35 https://dx.doi.org/10.20517/2394-4722.2021.74
92. DOI PubMed
45. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int 2014;94:25-34. DOI PubMed PMC
46. O'Brien CA, Plotkin LI, Galli C, et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One
2008;3:e2942. DOI PubMed PMC
47. Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat
Med 2011;17:1231-4. DOI PubMed
48. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med
2011;17:1235-41. DOI PubMed PMC
49. Harris SE, MacDougall M, Horn D, et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone
2012;50:42-53. DOI PubMed PMC
50. Yang J, Shah R, Robling AG, et al. HMGB1 is a bone-active cytokine. J Cell Physiol 2008;214:730-9. DOI PubMed
51. Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone
involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 2012;50:1115-22. DOI
PubMed PMC
52. Ramp WK, Neuman WF. Some factors affecting mineralization of bone in tissue culture. Am J Physiol 1971;220:270-4. DOI
PubMed
53. Prasadam I, Zhou Y, Du Z, Chen J, Crawford R, Xiao Y. Osteocyte-induced angiogenesis via VEGF-MAPK-dependent pathways in
endothelial cells. Mol Cell Biochem 2014;386:15-25. DOI PubMed
54. Santos A, Bakker AD, Willems HM, Bravenboer N, Bronckers AL, Klein-Nulend J. Mechanical loading stimulates BMP7, but not
BMP2, production by osteocytes. Calcif Tissue Int 2011;89:318-26.
55. Mo C, Zhao R, Vallejo J, et al. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation. Cell
Cycle 2015;14:1507-16. DOI PubMed PMC
56. Mo C, Romero-Suarez S, Bonewald L, Johnson M, Brotto M. Prostaglandin E2: from clinical applications to its potential role in
bone- muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol 2012;6:223-9. DOI PubMed PMC
57. Huang J, Romero-Suarez S, Lara N, et al. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-
catenin pathway. JBMR Plus 2017;1:86-100. DOI PubMed PMC
58. Kawao N, Kaji H. Interactions between muscle tissues and bone metabolism. J Cell Biochem 2015;116:687-95. DOI PubMed
59. Li G, Zhang L, Ning K, et al. Osteocytic connexin43 channels regulate bone-muscle crosstalk. Cells 2021;10:237. DOI PubMed
PMC
60. Bonewald LF, Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol 2013;28:563-8. DOI PubMed PMC
61. Atkinson EG, Delgado-Calle J. The emerging role of osteocytes in cancer in bone. JBMR Plus 2019;3:e10186. DOI PubMed PMC
62. Cui Y-X, Evans BAJ, Jiang WG. New roles of osteocytes in proliferation, migration and invasion of breast and prostate cancer cells.
Anticancer Res 2016;36:1193-201. PubMed
63. Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET. Tumor-induced pressure in the bone microenvironment causes osteocytes to
promote the growth of prostate cancer bone metastases. Cancer Res 2015;75:2151-8. DOI PubMed PMC
64. Ma YV, Xu L, Mei X, Middleton K, You L. Mechanically stimulated osteocytes reduce the bone-metastatic potential of breast cancer
cells in vitro by signaling through endothelial cells. J Cell Biochem ;2018:7590-601. DOI PubMed
65. Ma YV, Lam C, Dalmia S, et al. Mechanical regulation of breast cancer migration and apoptosis via direct and indirect osteocyte
signaling. J Cell Biochem 2018;119:5665-75. DOI PubMed
66. Fan Y, Jalali A, Chen A, et al. Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion.
Bone Res 2020;8:9. DOI PubMed PMC
67. Wang W, Yang X, Dai J, Lu Y, Zhang J, Keller ET. Prostate cancer promotes a vicious cycle of bone metastasis progression through
inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene 2019;38:4540-59. DOI
PubMed
68. Andersen TL, Søe K, Sondergaard TE, Plesner T, Delaisse JM. Myeloma cell-induced disruption of bone remodelling compartments
leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. Br J Haematol 2010;148:551-61. DOI PubMed
69. Roodman GD. Pathogenesis of myeloma bone disease. Leukemia 2009;23:435-41. DOI PubMed
70. Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with
skeletal metastases. Cancer Metastasis Rev 2014;33:527-43. DOI PubMed PMC
71. Lecka-Czernik B, Rosen CJ, Kawai M. Skeletal aging and the adipocyte program: New insights from an "old" molecule. Cell Cycle
2010;9:3648-54. DOI PubMed PMC
72. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM. Marrow fat and the bone microenvironment: developmental, functional, and
pathological implications. Crit Rev Eukaryot Gene Expr 2009;19:109-24. DOI PubMed PMC
73. Peinado H, Zhang H, Matei IR, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 2017;17:302-17.
DOI PubMed
74. Wang TH, Hsia SM, Shieh TM. Lysyl oxidase and the tumor microenvironment. Int J Mol Sci 2016;18:62. DOI PubMed PMC
75. Coniglio SJ. Role of tumor-derived chemokines in osteolytic bone metastasis. Front Endocrinol (Lausanne) 2018;9:313. DOI
PubMed PMC
76. Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma.
Front Endocrinol (Lausanne) 2018;9:788. DOI PubMed PMC
77. Kim S, Takahashi H, Lin WW, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis.