Page 78 - Read Online
P. 78

Page 16 of 19       Maurizi et al. J Cancer Metastasis Treat 2021;7:35  https://dx.doi.org/10.20517/2394-4722.2021.74

                    92.  DOI  PubMed
               45.       Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int 2014;94:25-34.  DOI  PubMed  PMC
               46.       O'Brien CA, Plotkin LI, Galli C, et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One
                    2008;3:e2942.  DOI  PubMed  PMC
               47.       Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat
                    Med 2011;17:1231-4.  DOI  PubMed
               48.       Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med
                    2011;17:1235-41.  DOI  PubMed  PMC
               49.       Harris SE, MacDougall M, Horn D, et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone
                    2012;50:42-53.  DOI  PubMed  PMC
               50.       Yang J, Shah R, Robling AG, et al. HMGB1 is a bone-active cytokine. J Cell Physiol 2008;214:730-9.  DOI  PubMed
               51.       Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone
                    involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 2012;50:1115-22.  DOI
                    PubMed  PMC
               52.       Ramp WK, Neuman WF. Some factors affecting mineralization of bone in tissue culture. Am J Physiol 1971;220:270-4.  DOI
                    PubMed
               53.       Prasadam I, Zhou Y, Du Z, Chen J, Crawford R, Xiao Y. Osteocyte-induced angiogenesis via VEGF-MAPK-dependent pathways in
                    endothelial cells. Mol Cell Biochem 2014;386:15-25.  DOI  PubMed
               54.       Santos A, Bakker AD, Willems HM, Bravenboer N, Bronckers AL, Klein-Nulend J. Mechanical loading stimulates BMP7, but not
                    BMP2, production by osteocytes. Calcif Tissue Int 2011;89:318-26.
               55.       Mo C, Zhao R, Vallejo J, et al. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation. Cell
                    Cycle 2015;14:1507-16.  DOI  PubMed  PMC
               56.       Mo C, Romero-Suarez S, Bonewald L, Johnson M, Brotto M. Prostaglandin E2: from clinical applications to its potential role in
                    bone- muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol 2012;6:223-9.  DOI  PubMed  PMC
               57.       Huang J, Romero-Suarez S, Lara N, et al. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-
                    catenin pathway. JBMR Plus 2017;1:86-100.  DOI  PubMed  PMC
               58.       Kawao N, Kaji H. Interactions between muscle tissues and bone metabolism. J Cell Biochem 2015;116:687-95.  DOI  PubMed
               59.       Li G, Zhang L, Ning K, et al. Osteocytic connexin43 channels regulate bone-muscle crosstalk. Cells 2021;10:237.  DOI  PubMed
                    PMC
               60.       Bonewald LF, Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol 2013;28:563-8.  DOI  PubMed  PMC
               61.       Atkinson EG, Delgado-Calle J. The emerging role of osteocytes in cancer in bone. JBMR Plus 2019;3:e10186.  DOI  PubMed  PMC
               62.       Cui Y-X, Evans BAJ, Jiang WG. New roles of osteocytes in proliferation, migration and invasion of breast and prostate cancer cells.
                    Anticancer Res 2016;36:1193-201.  PubMed
               63.       Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET. Tumor-induced pressure in the bone microenvironment causes osteocytes to
                    promote the growth of prostate cancer bone metastases. Cancer Res 2015;75:2151-8.  DOI  PubMed  PMC
               64.       Ma YV, Xu L, Mei X, Middleton K, You L. Mechanically stimulated osteocytes reduce the bone-metastatic potential of breast cancer
                    cells in vitro by signaling through endothelial cells. J Cell Biochem ;2018:7590-601.  DOI  PubMed
               65.       Ma YV, Lam C, Dalmia S, et al. Mechanical regulation of breast cancer migration and apoptosis via direct and indirect osteocyte
                    signaling. J Cell Biochem 2018;119:5665-75.  DOI  PubMed
               66.       Fan Y, Jalali A, Chen A, et al. Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion.
                    Bone Res 2020;8:9.  DOI  PubMed  PMC
               67.       Wang W, Yang X, Dai J, Lu Y, Zhang J, Keller ET. Prostate cancer promotes a vicious cycle of bone metastasis progression through
                    inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene 2019;38:4540-59.  DOI
                    PubMed
               68.       Andersen TL, Søe K, Sondergaard TE, Plesner T, Delaisse JM. Myeloma cell-induced disruption of bone remodelling compartments
                    leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. Br J Haematol 2010;148:551-61.  DOI  PubMed
               69.       Roodman GD. Pathogenesis of myeloma bone disease. Leukemia 2009;23:435-41.  DOI  PubMed
               70.       Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with
                    skeletal metastases. Cancer Metastasis Rev 2014;33:527-43.  DOI  PubMed  PMC
               71.       Lecka-Czernik B, Rosen CJ, Kawai M. Skeletal aging and the adipocyte program: New insights from an "old" molecule. Cell Cycle
                    2010;9:3648-54.  DOI  PubMed  PMC
               72.       Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM. Marrow fat and the bone microenvironment: developmental, functional, and
                    pathological implications. Crit Rev Eukaryot Gene Expr 2009;19:109-24.  DOI  PubMed  PMC
               73.       Peinado H, Zhang H, Matei IR, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 2017;17:302-17.
                    DOI  PubMed
               74.       Wang TH, Hsia SM, Shieh TM. Lysyl oxidase and the tumor microenvironment. Int J Mol Sci 2016;18:62.  DOI  PubMed  PMC
               75.       Coniglio SJ. Role of tumor-derived chemokines in osteolytic bone metastasis. Front Endocrinol (Lausanne) 2018;9:313.  DOI
                    PubMed  PMC
               76.       Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma.
                    Front Endocrinol (Lausanne) 2018;9:788.  DOI  PubMed  PMC
               77.       Kim S, Takahashi H, Lin WW, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis.
   73   74   75   76   77   78   79   80   81   82   83