Page 77 - Read Online
P. 77
Maurizi et al. J Cancer Metastasis Treat 2021;7:35 https://dx.doi.org/10.20517/2394-4722.2021.74 Page 15 of 19
10. Liu Y, Cao X. Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell 2016;30:668-81. DOI PubMed
11. Lai C, August S, Behar R, et al. Characteristics of immunosuppressive regulatory T cells in cutaneous squamous cell carcinomas and
role in metastasis. Lancet 2015;385:S59. DOI PubMed
12. Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl) 2016;94:509-22. DOI PubMed
13. Graney PL, Tavakol DN, Chramiec A, Ronaldson-Bouchard K, Vunjak-Novakovic G. Engineered models of tumor metastasis with
immune cell contributions. iScience 2021;24:102179. DOI PubMed PMC
14. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 2019;51:27-41. DOI
PubMed PMC
15. Li R, Wen A, Lin J. Pro-inflammatory cytokines in the formation of the pre-metastatic niche. Cancers (Basel) 2020;12:3752. DOI
PubMed PMC
16. Chung HY, Kim DH, Lee EK, et al. Redefining chronic inflammation in aging and age-related diseases: proposal of the
senoinflammation concept. Aging Dis 2019;10:367-82. DOI PubMed PMC
17. Kim DH, Bang E, Arulkumar R, et al. Senoinflammation: A major mediator underlying age-related metabolic dysregulation. Exp
Gerontol 2020;134:110891. DOI PubMed
18. Maurizi A, Rucci N. The osteoclast in bone metastasis: player and target. Cancers (Basel) 2018;10:218. DOI PubMed PMC
19. Claesson-Welsh L. Vascular permeability--the essentials. Ups J Med Sci 2015;120:135-43.
20. Huang M, Liu T, Ma P, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in
glioblastoma. J Clin Invest 2016;126:1801-14. DOI PubMed PMC
21. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends
Mol Med 2011;17:347-62. DOI PubMed
22. Minami T, Jiang S, Schadler K, et al. The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the
establishment of lung metastases. Cell Rep 2013;4:709-23. DOI PubMed PMC
23. Gupta GP, Nguyen DX, Chiang AC, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature
2007;446:765-70. DOI PubMed
24. Huang Y, Song N, Ding Y, et al. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res
2009;69:7529-37. DOI PubMed
25. Ghouse SM, Vadrevu SK, Manne S, et al. Therapeutic targeting of vasculature in the premetastatic and metastatic niches reduces lung
metastasis. J Immunol 2020;204:990-1000. DOI PubMed PMC
26. Li X, Loberg R, Liao J, et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res
2009;69:1685-92. DOI PubMed PMC
27. Mizutani K, Sud S, McGregor NA, et al. The chemokine CCL2 increases prostate tumor growth and bone metastasis through
macrophage and osteoclast recruitment. Neoplasia 2009;11:1235-42. DOI PubMed PMC
28. Erler JT, Bennewith KL, Cox TR, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form
the premetastatic niche. Cancer Cell 2009;15:35-44. DOI PubMed PMC
29. Gartland A, Erler JT, Cox TR. The role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis. J
Bone Oncol 2016;5:100-3. DOI PubMed PMC
30. Reynaud C, Ferreras L, Di Mauro P, et al. Lysyl oxidase is a strong determinant of tumor cell colonization in bone. Cancer Res
2017;77:268-78. DOI PubMed
31. Cox TR, Rumney RMH, Schoof EM, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase.
Nature 2015;522:106-10. DOI PubMed PMC
32. Ardura JA, Álvarez-Carrión L, Gutiérrez-Rojas I, Friedman PA, Gortázar AR, Alonso V. MINDIN secretion by prostate tumors
induces premetastatic changes in bone via β-catenin. Endocr Relat Cancer 2020;27:441-56. DOI PubMed
33. Guise TA. The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact 2002;2:570-2. PubMed
34. Keller ET. The role of osteoclastic activity in prostate cancer skeletal metastases. Drugs Today (Barc) 2002;38:91-102. DOI
PubMed
35. Loftus A, Cappariello A, George C, et al. Extracellular vesicles from osteotropic breast cancer cells affect bone resident cells. J Bone
Miner Res 2020;35:396-412. DOI PubMed
36. Cappariello A, Rucci N. Tumour-derived extracellular vesicles (EVs): a dangerous "message in a bottle" for bone. Int J Mol Sci
2019;20:4805. DOI PubMed PMC
37. Johnson LC. The kinetics of skeletal remodeling. Birth Defects 1966;2:66-142.
38. Marotti G, Ferretti M, Remaggi F, Palumbo C. Quantitative evaluation on osteocyte canalicular density in human secondary osteons.
Bone 1995;16:125-8. DOI PubMed
39. Mullender M, van der Meer D, Huiskes R, Lips P. Osteocyte density changes in aging and osteoporosis. Bone 1996;18:109-13. DOI
PubMed
40. Zallone A, Teti A, Primavera M V, Pace G. Mature osteocytes behaviour in a repletion period: the occurrence of osteoplastic activity.
Basic Appl Histochem 1983;27:191-204.
41. Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 2014;561:3-12. DOI
PubMed
42. Delgado-Calle J, Bellido T. Osteocytes and skeletal pathophysiology. Curr Mol Biol Rep 2015;1:157-67. DOI PubMed PMC
43. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone 2017;96:29-37. DOI PubMed PMC
44. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013;19:179-