Page 100 - Read Online
P. 100

Ottewell et al. J Cancer Metastasis Treat 2021;7:11  https://dx.doi.org/10.20517/2394-4722.2021.14  Page 19 of 20

               30.      Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3:537-49.  DOI
                   PubMed
               31.      Wetterwald A, van der Pluijm G, Que I, et al. Optical Imaging of Cancer Metastasis to Bone Marrow. Am J Pathol 2002;160:1143-53.
                   DOI  PubMed  PMC
               32.      Bishop RT, Marino S, Carrasco G, et al. Combined administration of a small-molecule inhibitor of TRAF6 and Docetaxel reduces
                   breast cancer skeletal metastasis and osteolysis. Cancer Lett 2020;488:27-39.  DOI  PubMed
               33.      Bishop RT, Marino S, de Ridder D, et al. Pharmacological inhibition of the IKKε/TBK-1 axis potentiates the anti-tumour and anti-
                   metastatic effects of Docetaxel in mouse models of breast cancer. Cancer Lett 2019;450:76-87.  DOI  PubMed
               34.      Fathers KE, Bell ES, Rajadurai CV, et al. Crk adaptor proteins act as key signaling integrators for breast tumorigenesis. Breast Cancer
                   Res 2012;14:R74.  DOI  PubMed  PMC
               35.      Werbeck JL, Thudi NK, Martin CK, et al. Tumor microenvironment regulates metastasis and metastasis genes of mouse MMTV-
                   PymT mammary cancer cells in vivo. Vet Pathol 2014;51:868-81.  DOI  PubMed  PMC
               36.      Ottewell PD, Woodward JK, Lefley DV, Evans CA, Coleman RE, Holen I. Anticancer mechanisms of doxorubicin and zoledronic acid
                   in breast cancer tumor growth in bone. Mol Cancer Ther 2009;8:2821-32.  DOI  PubMed
               37.      Zhou Y, Shao G, Liu S. Monitoring Breast Tumor Lung Metastasis by U-SPECT-II/CT with an Integrin α(v)β(3)-Targeted
                   Radiotracer( 99m)Tc-3P-RGD(2). Theranostics 2012;2:577-88.  DOI  PubMed  PMC
               38.      Allocca G, Hughes R, Wang N, et al. The bone metastasis niche in breast cancer-potential overlap with the haematopoietic stem cell
                   niche in vivo. J Bone Oncol 2019;17:100244.  DOI  PubMed  PMC
               39.      Peinado H, Zhang H, Matei IR, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 2017;17:302-17.
                   DOI  PubMed
               40.      Holen I, Walker M, Nutter F, et al. Oestrogen receptor positive breast cancer metastasis to bone: inhibition by targeting the bone
                   microenvironment in vivo. Clin Exp Metastasis 2016;33:211-24.  DOI  PubMed
               41.      Wang N, Reeves KJ, Brown HK, et al. The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the
                   number of seeds; evidence from in vivo models of breast and prostate cancer. J Exp Clin Cancer Res 2015;34:124.  DOI  PubMed
                   PMC
               42.      Ottewell PD, Wang N, Brown HK, et al. Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone
                   microenvironment in vivo. Clin Cancer Res 2014;20:2922-32.  DOI  PubMed  PMC
               43.      Ottewell PD, Wang N, Brown HK, et al. OPG-Fc inhibits ovariectomy-induced growth of disseminated breast cancer cells in bone. Int
                   J Cancer 2015;137:968-77.  DOI  PubMed
               44.      Cailleau R, Young R, Olivé M, Reeves WJ Jr. Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 1974;53:661-74.  DOI
                   PubMed  PMC
               45.      Sher E, Eisman JA, Moseley JM, Martin TJ. Whole-cell uptake and nuclear localization of 1,25-dihydroxycholecalciferol by breast
                   cancer cells (T47 D) in culture. Biochem J 1981;200:315-20.  DOI  PubMed  PMC
               46.      Lv X, Dobrolecki LE, Ding Y, Rosen JM, Lewis MT, Chen X. Orthotopic Transplantation of Breast Tumors as Preclinical Models for
                   Breast Cancer. J Vis Exp 2020;(159):10.3791/61173.  DOI  PubMed  PMC
               47.      Fatima I, El-Ayachi I, Playa HC, et al. Simultaneous Multi-Organ Metastases from Chemo-Resistant Triple-Negative Breast Cancer
                   Are Prevented by Interfering with WNT-Signaling. Cancers (Basel) 2019;11:2039.  DOI  PubMed  PMC
               48.      Giuliano M, Herrera S, Christiny P, et al. Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-
                   bearing mice as a novel model to study metastasis. Breast Cancer Res 2015;17:3.  DOI  PubMed  PMC
               49.      Pillai SG, Li S, Siddappa CM, Ellis MJ, Watson MA, Aft R. Identifying biomarkers of breast cancer micrometastatic disease in bone
                   marrow using a patient-derived xenograft mouse model. Breast Cancer Res 2018;20:2.  DOI  PubMed  PMC
               50.      Zhang W, Bado I, Wang H, Lo HC, Zhang XH. Bone Metastasis: Find Your Niche and Fit in. Trends Cancer 2019;5:95-110.  DOI
                   PubMed  PMC
               51.      Kuperwasser C, Dessain S, Bierbaum BE, et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res
                   2005;65:6130-8.  DOI  PubMed
               52.      Lam P, Yang W, Amemiya Y, et al. A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast
                   cancers. Cancer Biol Ther 2009;8:1010-7.  DOI  PubMed
               53.      Holen I, Nutter F, Wilkinson JM, Evans CA, Avgoustou P, Ottewell PD. Human breast cancer bone metastasis in vitro and in vivo: a
                   novel 3D model system for studies of tumour cell-bone cell interactions. Clin Exp Metastasis 2015;32:689-702.  DOI  PubMed
               54.      Yang W, Lam P, Kitching R, et al. Breast cancer metastasis in a human bone NOD/SCID mouse model. Cancer Biol Ther
                   2007;6:1289-94.  DOI  PubMed
               55.      Ottewell PD, Coleman RE, Holen I. From genetic abnormality to metastases: murine models of breast cancer and their use in the
                   development of anticancer therapies. Breast Cancer Res Treat 2006;96:101-13.  DOI  PubMed
               56.      Derksen PW, Braumuller TM, van der Burg E, et al. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland
                   development and leads to pleomorphic invasive lobular carcinoma in mice. Dis Model Mech 2011;4:347-58.  DOI  PubMed  PMC
               57.      Céspedes MV, Casanova I, Parreño M, Mangues R. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 2006;8:318-
                   29.  DOI  PubMed
               58.      Nandi S, Guzman RC, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl
                   Acad Sci U S A 1995;92:3650-7.  DOI  PubMed  PMC
               59.      Buijs JT, Matula KM, Cheung H, et al. Spontaneous bone metastases in a preclinical orthotopic model of invasive lobular carcinoma;
                   the effect of pharmacological targeting TGFβ receptor I kinase. J Pathol 2015;235:745-59.  DOI  PubMed  PMC
   95   96   97   98   99   100   101   102   103   104   105