Page 36 - Read Online
P. 36

Wenner et al. J Cancer Metastasis Treat 2020;6:33  I  http://dx.doi.org/10.20517/2394-4722.2020.73                      Page 15 of 17

                   constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst 2011;103:571-84.
               19.  Xue C, Pasolli HA, Piscopo I, Gros DJ, Liu C, et al. Mitochondrial structure alteration in human prostate cancer cells upon initial
                   interaction with a chemopreventive agent phenethyl isothiocyanate. Cancer Cell Int 2014;14:30.
               20.  Xiao D, Powolny AA, Moura MB, Kelley EE, Bommareddy A, et al. Phenethyl isothiocyanate inhibits oxidative phosphorylation to
                   trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 2010;285:26558-69.
               21.  Akins NS, Nielson TC, Le HV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr
                   Top Med Chem 2018;18:494-504.
               22.  Akram M. Mini-review on glycolysis and cancer. J Cancer Educ 2013;28:454-7.
               23.  Singh KB, Hahm ER, Rigatti LH, Normolle DP, Yuan JM, et al. Inhibition of glycolysis in prostate cancer chemoprevention by phenethyl
                   isothiocyanate. Cancer Prev Res 2018;11:337-46.
               24.  Milane L, Duan Z, Amiji M. Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the
                   establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning. Cancer Cell Int 2011;11:3.
               25.  Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy.
                   Hypoxia (Auckl) 2015;3:83-92.
               26.  Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in
                   collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 2016;31:177-83.
               27.  Li H, Qiu Z, Li F, Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis.
                   Oncol Lett 2017;14:5865-70.
               28.  Yang F, Yu N, Wang H, Zhang C, Zhang Z, et al. Downregulated expression of hepatoma-derived growth factor inhibits migration and
                   invasion of prostate cancer cells by suppressing epithelial-mesenchymal transition and MMP2, MMP9. PLoS One 2018;13:e0190725.
               29.  Wang H, Wang L, Cao L, Zhang Q, Song Q, et al. Inhibition of autophagy potentiates the anti-metastasis effect of phenethyl
                   isothiocyanate through JAK2/STAT3 pathway in lung cancer cells. Mol Carcinog 2018;57:522-35.
               30.  Zhang C, Shu L, Kim H, Khor TO, Wu R, et al. Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically
                   through regulating microRNA-194. Mol Nutr Food Res 2016;60:1427-36.
               31.  O’Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, et al. Unravelling the mystery of capsaicin: a tool to understand and treat pain.
                   Pharmacol Rev 2012;64:939-71.
               32.  Wang Y, Deng X, Yu C, Zhao G, Zhou J, et al. Synergistic inhibitory effects of capsaicin combined with cisplatin on human osteosarcoma
                   in culture and in xenografts. J Exp Clin Cancer Res 2018;37:251.
               33.  Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, et al. Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition
                   of chemotherapeutic-induced autophagy. PLoS One 2015;10:e0121538.
               34.  Garufi A, Pistritto G, Cirone M, D’Orazi G. Reactivation of mutant p53 by capsaicin, the major constituent of peppers. J Exp Clin Cancer
                   Res 2016;35:136.
               35.  Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage
                   signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol 2012;83:747-57.
               36.  Liu YP, Dong FX, Chai X, Zhu S, Zhang BL, et al. Role of autophagy in capsaicin-induced apoptosis in U251 glioma cells. Cell Mol
                   Neurobiol 2016;36:737-43.
               37.  Chen X, Tan M, Xie Z, Feng B, Zhao Z, et al. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin-induced apoptosis in
                   human hepatocellular carcinoma cells. Free Radic Res 2016;50:744-55.
               38.  Chu H, Li M, Wang X. Capsaicin induces apoptosis and autophagy in human melanoma cells. Oncol Lett 2019;17:4827-34.
               39.  Amantini C, Morelli MB, Nabissi M, Cardinali C, Santoni M, et al. Capsaicin triggers autophagic cell survival which drives epithelial
                   mesenchymal transition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner. Oncotarget 2016;7:50180-94.
               40.  Oh SH, Kim YS, Lim SC, Hou YF, Chang IY, et al. Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces
                   autophagy in human cancer cells in a catalase-regulated manner. Autophagy 2008;4:1009-19.
               41.  Ramos-Torres Á, Bort A, Morell C, Rodríguez-Henche N, Díaz-Laviada I. The pepper’s natural ingredient capsaicin induces autophagy
                   blockage in prostate cancer cells. Oncotarget 2016;7:1569-83.
               42.  Lin YT, Wang HC, Hsu YC, Cho CL, Yang MY, et al. Capsaicin induces autophagy and apoptosis in human nasopharyngeal carcinoma
                   cells by downregulating the PI3K/AKT/mTOR Pathway. Int J Mol Sci 2017;18:1343.
               43.  Kakar SS, Jala VR, Fong MY. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem Biophys
                   Res Commun 2012;423:819-25.
               44.  Hsu JH, Chang PM, Cheng TS, Kuo YL, Wu AT, et al. Identification of Withaferin A as a potential candidate for anti-cancer therapy in
                   non-small cell lung cancer. Cancers (Basel) 2019;11:1003.
               45.  Fong MY, Jin S, Rane M, Singh RK, Gupta R, et al. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated
                   autophagy in ovarian cancer. PLoS One 2012;7:e42265.
               46.  Alnuqaydan, A, Rah B, Almutary A, Chauhan S. Synergistic antitumor effect of 5-fluorouracil and withaferin-A induced endoplasmic
                   reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am J Cancer Res 2020;10:799-815.
               47.  Ghosh K, De S, Das S, Mukherjee S, Sengupta Bandyopadhyay S. Withaferin A induces ROS-mediated paraptosis in human breast cancer
                   cell-lines MCF-7 and MDA-MB-231. PLoS One 2016;11:e0168488.
               48.  Liu X, Li Y, Ma Q, Wang Y, Song AL. Withaferin-A inhibits growth of drug-resistant breast carcinoma by inducing apoptosis and
                   autophagy, endogenous reactive oxygen species (ROS) production, and inhibition of cell migration and nuclear factor kappa B (Nf-κB)/
                   mammalian target of rapamycin (m-TOR) signalling pathway. Med Sci Monit 2019;25:6855-63.
   31   32   33   34   35   36   37   38   39   40   41