Page 69 - Read Online
P. 69

Page 16 of 18       Malone et al. J Cancer Metastasis Treat 2021;7:40  https://dx.doi.org/10.20517/2394-4722.2021.37

               79.       Li R, Huang YG, Fang D, Le WD. (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects
                    against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 2004;78:723-31.  DOI  PubMed
               80.       Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci
                    2007;8:57-69.  DOI  PubMed
               81.       Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide
                    impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci
                    2005;29:381-93.  DOI  PubMed
               82.       Zhou X, Spittau B, Krieglstein K. TGFbeta signalling plays an important role in IL4-induced alternative activation of microglia. J
                    Neuroinflammation 2012;9:210.  DOI  PubMed  PMC
               83.       Benbenishty A, Gadrich M, Cottarelli A, et al. Prophylactic TLR9 stimulation reduces brain metastasis through microglia activation.
                    PLoS Biol 2019;17:e2006859.  DOI  PubMed  PMC
               84.       Pukrop T, Dehghani F, Chuang HN, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent
                    way. Glia 2010;58:1477-89.  DOI  PubMed
               85.       Xing F, Liu Y, Wu SY, et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to
                    promote brain metastasis. Cancer Res 2018;78:4316-30.  DOI  PubMed  PMC
               86.       Loda A, Heard E. Xist RNA in action: past, present, and future. PLoS Genet 2019;15:e1008333.  DOI  PubMed  PMC
               87.       Friebel E, Kapolou K, Unger S, et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading
                    leukocytes. Cell 2020;181:1626-42.e20.  DOI  PubMed
               88.       Kloosterman DJ, Akkari L. Mapping the uncharted territories of human brain malignancies. Cell 2020;181:1454-7.  DOI  PubMed
               89.       Guldner IH, Wang Q, Yang L, et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through
                    Cxcl10. Cell 2020;183:1234-48.e25.  DOI  PubMed  PMC
               90.       Schulz M, Michels B, Niesel K, et al. Cellular and molecular changes of brain metastases-associated myeloid cells during disease
                    progression and therapeutic response. iScience 2020;23:101178.  DOI  PubMed  PMC
               91.       Freeman MR. Specification and morphogenesis of astrocytes. Science 2010;330:774-8.  DOI  PubMed  PMC
               92.       Da Silva L, Simpson PT, Smart CE, et al. HER3 and downstream pathways are involved in colonization of brain metastases from
                    breast cancer. Breast Cancer Res 2010;12:R46.  DOI  PubMed  PMC
               93.       Lorger M, Felding-Habermann B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain
                    metastasis. Am J Pathol 2010;176:2958-71.  DOI  PubMed  PMC
               94.       Seike T, Fujita K, Yamakawa Y, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the
                    microenvironment of brain metastasis. Clin Exp Metastasis 2011;28:13-25.  DOI  PubMed  PMC
               95.       Lin Q, Balasubramanian K, Fan D, et al. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular
                    calcium through gap junction communication channels. Neoplasia 2010;12:748-54.  DOI  PubMed  PMC
               96.       Valiente M, Obenauf AC, Jin X, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell
                    2014;156:1002-16.  DOI  PubMed  PMC
               97.       Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH. Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in
                    transendothelial migration of melanoma cells. Mol Biol Cell 2001;12:2699-710.  DOI  PubMed  PMC
               98.       Silletti S, Mei F, Sheppard D, Montgomery AM. et al. Plasmin-sensitive dibasic sequences in the third fibronectin-like domain of L1-
                    cell adhesion molecule (CAM) facilitate homomultimerization and concomitant integrin recruitment. J Cell Biol 2000;149:1485-502.
                    DOI  PubMed  PMC
               99.       Xing F, Kobayashi A, Okuda H, et al. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating
                    Notch signalling in brain. EMBO Mol Med 2013;5:384-96.  DOI  PubMed  PMC
               100.      Nam DH, Jeon HM, Kim S, et al. Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res
                    2008:14;4059-66.  DOI  PubMed
               101.      Shen Q, Reedijk M. Notch signaling and the breast cancer microenvironment. In: Reichrath J, Reichrath S, editors. Notch signaling in
                    embryology and cancer. Cham: Springer; 2021. p. 183-200.
               102.      Meurette O. Shaping of the tumor microenvironment by notch signaling. In: Birbrair A, editor. Tumor Microenvironment. Cham:
                    Springer; 2020. p. 1-16.
               103.      Marchetti D, Aucoin R, Blust J, Murry B, Greiter-Wilke A. p75 neurotrophin receptor functions as a survival receptor in brain-
                    metastatic melanoma cells. J Cell Biochem 2004;91:206-15.  DOI  PubMed
               104.      Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase.
                    Cancer Res 2000;60:4767-70.  PubMed
               105.      Nakajima M, Irimura T, Nicolson GL. Heparanases and tumor metastasis. J Cell Biochem 1988;36:157-67.  DOI  PubMed
               106.      Vlodavsky I, Elkin M, Ilan N. Impact of heparanase and the tumor microenvironment on cancer metastasis and angiogenesis: basic
                    aspects and clinical applications. Rambam Maimonides Med J 2011;2:e0019.  DOI  PubMed  PMC
               107.      Alhusban L, Ayoub NM, Alhusban A. ProBDNF is a novel mediator of the interaction between MDA-MB-231 breast cancer cells
                    and brain microvascular endothelial cells. Curr Mol Med 2020.  DOI  PubMed
               108.      Denkins Y, Reiland J, Roy M, et al. Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol 2004;6:154-65.  DOI
                    PubMed  PMC
               109.      Louie E, Chen XF, Coomes A, Ji K, Tsirka S, Chen EI. Neurotrophin-3 modulates breast cancer cells and the microenvironment to
                    promote the growth of breast cancer brain metastasis. Oncogene 2013;32:4064-77.  DOI  PubMed  PMC
               110.      Priego N, Zhu L, Monteiro C, et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med
   64   65   66   67   68   69   70   71   72   73   74