Page 69 - Read Online
P. 69
Page 16 of 18 Malone et al. J Cancer Metastasis Treat 2021;7:40 https://dx.doi.org/10.20517/2394-4722.2021.37
79. Li R, Huang YG, Fang D, Le WD. (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects
against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 2004;78:723-31. DOI PubMed
80. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci
2007;8:57-69. DOI PubMed
81. Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide
impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci
2005;29:381-93. DOI PubMed
82. Zhou X, Spittau B, Krieglstein K. TGFbeta signalling plays an important role in IL4-induced alternative activation of microglia. J
Neuroinflammation 2012;9:210. DOI PubMed PMC
83. Benbenishty A, Gadrich M, Cottarelli A, et al. Prophylactic TLR9 stimulation reduces brain metastasis through microglia activation.
PLoS Biol 2019;17:e2006859. DOI PubMed PMC
84. Pukrop T, Dehghani F, Chuang HN, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent
way. Glia 2010;58:1477-89. DOI PubMed
85. Xing F, Liu Y, Wu SY, et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to
promote brain metastasis. Cancer Res 2018;78:4316-30. DOI PubMed PMC
86. Loda A, Heard E. Xist RNA in action: past, present, and future. PLoS Genet 2019;15:e1008333. DOI PubMed PMC
87. Friebel E, Kapolou K, Unger S, et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading
leukocytes. Cell 2020;181:1626-42.e20. DOI PubMed
88. Kloosterman DJ, Akkari L. Mapping the uncharted territories of human brain malignancies. Cell 2020;181:1454-7. DOI PubMed
89. Guldner IH, Wang Q, Yang L, et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through
Cxcl10. Cell 2020;183:1234-48.e25. DOI PubMed PMC
90. Schulz M, Michels B, Niesel K, et al. Cellular and molecular changes of brain metastases-associated myeloid cells during disease
progression and therapeutic response. iScience 2020;23:101178. DOI PubMed PMC
91. Freeman MR. Specification and morphogenesis of astrocytes. Science 2010;330:774-8. DOI PubMed PMC
92. Da Silva L, Simpson PT, Smart CE, et al. HER3 and downstream pathways are involved in colonization of brain metastases from
breast cancer. Breast Cancer Res 2010;12:R46. DOI PubMed PMC
93. Lorger M, Felding-Habermann B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain
metastasis. Am J Pathol 2010;176:2958-71. DOI PubMed PMC
94. Seike T, Fujita K, Yamakawa Y, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the
microenvironment of brain metastasis. Clin Exp Metastasis 2011;28:13-25. DOI PubMed PMC
95. Lin Q, Balasubramanian K, Fan D, et al. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular
calcium through gap junction communication channels. Neoplasia 2010;12:748-54. DOI PubMed PMC
96. Valiente M, Obenauf AC, Jin X, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell
2014;156:1002-16. DOI PubMed PMC
97. Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH. Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in
transendothelial migration of melanoma cells. Mol Biol Cell 2001;12:2699-710. DOI PubMed PMC
98. Silletti S, Mei F, Sheppard D, Montgomery AM. et al. Plasmin-sensitive dibasic sequences in the third fibronectin-like domain of L1-
cell adhesion molecule (CAM) facilitate homomultimerization and concomitant integrin recruitment. J Cell Biol 2000;149:1485-502.
DOI PubMed PMC
99. Xing F, Kobayashi A, Okuda H, et al. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating
Notch signalling in brain. EMBO Mol Med 2013;5:384-96. DOI PubMed PMC
100. Nam DH, Jeon HM, Kim S, et al. Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res
2008:14;4059-66. DOI PubMed
101. Shen Q, Reedijk M. Notch signaling and the breast cancer microenvironment. In: Reichrath J, Reichrath S, editors. Notch signaling in
embryology and cancer. Cham: Springer; 2021. p. 183-200.
102. Meurette O. Shaping of the tumor microenvironment by notch signaling. In: Birbrair A, editor. Tumor Microenvironment. Cham:
Springer; 2020. p. 1-16.
103. Marchetti D, Aucoin R, Blust J, Murry B, Greiter-Wilke A. p75 neurotrophin receptor functions as a survival receptor in brain-
metastatic melanoma cells. J Cell Biochem 2004;91:206-15. DOI PubMed
104. Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase.
Cancer Res 2000;60:4767-70. PubMed
105. Nakajima M, Irimura T, Nicolson GL. Heparanases and tumor metastasis. J Cell Biochem 1988;36:157-67. DOI PubMed
106. Vlodavsky I, Elkin M, Ilan N. Impact of heparanase and the tumor microenvironment on cancer metastasis and angiogenesis: basic
aspects and clinical applications. Rambam Maimonides Med J 2011;2:e0019. DOI PubMed PMC
107. Alhusban L, Ayoub NM, Alhusban A. ProBDNF is a novel mediator of the interaction between MDA-MB-231 breast cancer cells
and brain microvascular endothelial cells. Curr Mol Med 2020. DOI PubMed
108. Denkins Y, Reiland J, Roy M, et al. Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol 2004;6:154-65. DOI
PubMed PMC
109. Louie E, Chen XF, Coomes A, Ji K, Tsirka S, Chen EI. Neurotrophin-3 modulates breast cancer cells and the microenvironment to
promote the growth of breast cancer brain metastasis. Oncogene 2013;32:4064-77. DOI PubMed PMC
110. Priego N, Zhu L, Monteiro C, et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med