Page 68 - Read Online
P. 68
Malone et al. J Cancer Metastasis Treat 2021;7:40 https://dx.doi.org/10.20517/2394-4722.2021.37 Page 15 of 18
47. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients
diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 2004;22:2865-72. DOI PubMed
48. Sakhuja S, Deveaux A, Wilson LE, et al. Patterns of de-novo metastasis and breast cancer-specific mortality by race and molecular
subtype in the SEER population-based dataset. Breast Cancer Res Treat 2021;186:509-18. DOI PubMed
49. Malladi S, Macalinao DG, Jin X, et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell
2016;165:45-60. DOI PubMed PMC
50. Risson E, Nobre AR, Maguer-Satta V, Aguirre-Ghiso JA. The current paradigm and challenges ahead for the dormancy of
disseminated tumor cells. Nat Cancer 2020;1:672-80. DOI PubMed PMC
51. Baram T, Rubinstein-Achiasaf L, Ben-Yaakov H, Ben-Baruch A. Inflammation-driven breast tumor cell plasticity: stemness/EMT,
therapy resistance and dormancy. Front Oncol 2020;10:614468. DOI PubMed PMC
52. Bos PD, Zhang XH, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009;459:1005-9. DOI PubMed
PMC
53. Maiti A, Hait NC. Autophagy-mediated tumor cell survival and progression of breast cancer metastasis to the brain. J Cancer
2021;12:954-64. DOI PubMed PMC
54. Hebert JD, Myers SA, Naba A, et al. Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals
distinct metastatic niches. Cancer Res 2020;80:1475-85. DOI PubMed PMC
55. Semenza GL. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem
cell phenotype. EMBO J 2017;36:252-9. DOI PubMed PMC
56. Schild T, Low V, Blenis J, Gomes AP. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer
Cell 2018;33:347-54. DOI PubMed PMC
57. Lah TT, Novak M, Breznik B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol 2020;60:262-73. DOI
PubMed
58. Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab
2021;3:21-32. DOI PubMed PMC
59. Sharma MK, Seidlitz EP, Singh G. Cancer cells release glutamate via the cystine/glutamate antiporter. Biochem Biophys Res
Commun 2010;391:91-5. DOI PubMed
60. Blazquez R, Rietkötter E, Wenske B, et al. LEF1 supports metastatic brain colonization by regulating glutathione metabolism and
increasing ROS resistance in breast cancer. Int J Cancer 2020;146:3170-83. DOI PubMed
61. Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XH. Metastasis organotropism: redefining the congenial soil. Dev Cell
2019;49:375-91. DOI PubMed PMC
62. Masui K, Cavenee WK, Mischel PS. mTORC2 dictates Warburg effect and drug resistance. Cell Cycle 2014;13:1053-4. DOI
PubMed PMC
63. Pedrosa RMSM, Mustafa DA, Soffietti R, Kros JM. Breast cancer brain metastasis: molecular mechanisms and directions for
treatment. Neuro Oncol 2018;20:1439-49. DOI PubMed PMC
64. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015;527:329-35.
DOI PubMed PMC
65. Kaplan RN, Rafii S, Lyden D. Preparing the "soil": the premetastatic niche. Cancer Res 2006;66:11089-93. DOI PubMed PMC
66. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic
niche. Nature 2005;438:820-7. DOI PubMed PMC
67. Aguado BA, Bushnell GG, Rao SS, Jeruss JS, Shea LD. Engineering the pre-metastatic niche. Nat Biomed Eng 2017;1:10077. DOI
PubMed PMC
68. Guo Y, Ji X, Liu J, et al. Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer 2019;18:39. DOI PubMed
PMC
69. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016;30:668-81. DOI PubMed
70. Peinado H, Zhang H, Matei IR, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 2017;17:302-17.
DOI PubMed
71. Brandi J, Manfredi M, Speziali G, Gosetti F, Marengo E, Cecconi D. Proteomic approaches to decipher cancer cell secretome. Semin
Cell Dev Biol 2018;78:93-101. DOI PubMed
72. Witzel I, Oliveira-Ferrer L, Pantel K, Müller V, Wikman H. Breast cancer brain metastases: biology and new clinical perspectives.
Breast Cancer Res 2016;18:8. DOI PubMed PMC
73. Klemm F, Maas RR, Bowman RL, et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific
alterations of immune cells. Cell 2020;181:1643-60.e17. DOI PubMed
74. Carvalho R, Paredes J, Ribeiro AS. Impact of breast cancer cells secretome on the brain metastatic niche remodeling. Semin Cancer
Biol 2020;60:294-301. DOI PubMed
75. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010;7:354-65. DOI PubMed PMC
76. Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl
Neurobiol 2013;39:3-18. DOI PubMed
77. Sidani M, Wyckoff J, Xue C, Segall JE, Condeelis J. Probing the microenvironment of mammary tumors using multiphoton
microscopy. J Mammary Gland Biol Neoplasia 2006;11:151-63. DOI PubMed
78. Le W, Rowe D, Xie W, Ortiz I, He Y, Appel SH. Microglial activation and dopaminergic cell injury: an in vitro model relevant to
Parkinson's disease. J Neurosci 2001;21:8447-55. PubMed PMC